1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
// (C) Copyright 2007-2009 Andrew Sutton
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_CLIQUE_HPP
#define BOOST_GRAPH_CLIQUE_HPP
#include <vector>
#include <deque>
#include <boost/config.hpp>
#include <boost/concept/assert.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/concept/detail/concept_def.hpp>
namespace boost {
namespace concepts {
BOOST_concept(CliqueVisitor,(Visitor)(Clique)(Graph))
{
BOOST_CONCEPT_USAGE(CliqueVisitor)
{
vis.clique(k, g);
}
private:
Visitor vis;
Graph g;
Clique k;
};
} /* namespace concepts */
using concepts::CliqueVisitorConcept;
} /* namespace boost */
#include <boost/concept/detail/concept_undef.hpp>
namespace boost
{
// The algorithm implemented in this paper is based on the so-called
// Algorithm 457, published as:
//
// @article{362367,
// author = {Coen Bron and Joep Kerbosch},
// title = {Algorithm 457: finding all cliques of an undirected graph},
// journal = {Communications of the ACM},
// volume = {16},
// number = {9},
// year = {1973},
// issn = {0001-0782},
// pages = {575--577},
// doi = {http://doi.acm.org/10.1145/362342.362367},
// publisher = {ACM Press},
// address = {New York, NY, USA},
// }
//
// Sort of. This implementation is adapted from the 1st version of the
// algorithm and does not implement the candidate selection optimization
// described as published - it could, it just doesn't yet.
//
// The algorithm is given as proportional to (3.14)^(n/3) power. This is
// not the same as O(...), but based on time measures and approximation.
//
// Unfortunately, this implementation may be less efficient on non-
// AdjacencyMatrix modeled graphs due to the non-constant implementation
// of the edge(u,v,g) functions.
//
// TODO: It might be worthwhile to provide functionality for passing
// a connectivity matrix to improve the efficiency of those lookups
// when needed. This could simply be passed as a BooleanMatrix
// s.t. edge(u,v,B) returns true or false. This could easily be
// abstracted for adjacency matricies.
//
// The following paper is interesting for a number of reasons. First,
// it lists a number of other such algorithms and second, it describes
// a new algorithm (that does not appear to require the edge(u,v,g)
// function and appears fairly efficient. It is probably worth investigating.
//
// @article{DBLP:journals/tcs/TomitaTT06,
// author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
// title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
// journal = {Theor. Comput. Sci.},
// volume = {363},
// number = {1},
// year = {2006},
// pages = {28-42}
// ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
// }
/**
* The default clique_visitor supplies an empty visitation function.
*/
struct clique_visitor
{
template <typename VertexSet, typename Graph>
void clique(const VertexSet&, Graph&)
{ }
};
/**
* The max_clique_visitor records the size of the maximum clique (but not the
* clique itself).
*/
struct max_clique_visitor
{
max_clique_visitor(std::size_t& max)
: maximum(max)
{ }
template <typename Clique, typename Graph>
inline void clique(const Clique& p, const Graph& g)
{
BOOST_USING_STD_MAX();
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, p.size());
}
std::size_t& maximum;
};
inline max_clique_visitor find_max_clique(std::size_t& max)
{ return max_clique_visitor(max); }
namespace detail
{
template <typename Graph>
inline bool
is_connected_to_clique(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
typename graph_traits<Graph>::undirected_category)
{
return lookup_edge(u, v, g).second;
}
template <typename Graph>
inline bool
is_connected_to_clique(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
typename graph_traits<Graph>::directed_category)
{
// Note that this could alternate between using an || to determine
// full connectivity. I believe that this should produce strongly
// connected components. Note that using && instead of || will
// change the results to a fully connected subgraph (i.e., symmetric
// edges between all vertices s.t., if a->b, then b->a.
return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second;
}
template <typename Graph, typename Container>
inline void
filter_unconnected_vertices(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor v,
const Container& in,
Container& out)
{
BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
typename graph_traits<Graph>::directed_category cat;
typename Container::const_iterator i, end = in.end();
for(i = in.begin(); i != end; ++i) {
if(is_connected_to_clique(g, v, *i, cat)) {
out.push_back(*i);
}
}
}
template <
typename Graph,
typename Clique, // compsub type
typename Container, // candidates/not type
typename Visitor>
void extend_clique(const Graph& g,
Clique& clique,
Container& cands,
Container& nots,
Visitor vis,
std::size_t min)
{
BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( CliqueVisitorConcept<Visitor,Clique,Graph> ));
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
// Is there vertex in nots that is connected to all vertices
// in the candidate set? If so, no clique can ever be found.
// This could be broken out into a separate function.
{
typename Container::iterator ni, nend = nots.end();
typename Container::iterator ci, cend = cands.end();
for(ni = nots.begin(); ni != nend; ++ni) {
for(ci = cands.begin(); ci != cend; ++ci) {
// if we don't find an edge, then we're okay.
if(!lookup_edge(*ni, *ci, g).second) break;
}
// if we iterated all the way to the end, then *ni
// is connected to all *ci
if(ci == cend) break;
}
// if we broke early, we found *ni connected to all *ci
if(ni != nend) return;
}
// TODO: the original algorithm 457 describes an alternative
// (albeit really complicated) mechanism for selecting candidates.
// The given optimizaiton seeks to bring about the above
// condition sooner (i.e., there is a vertex in the not set
// that is connected to all candidates). unfortunately, the
// method they give for doing this is fairly unclear.
// basically, for every vertex in not, we should know how many
// vertices it is disconnected from in the candidate set. if
// we fix some vertex in the not set, then we want to keep
// choosing vertices that are not connected to that fixed vertex.
// apparently, by selecting fix point with the minimum number
// of disconnections (i.e., the maximum number of connections
// within the candidate set), then the previous condition wil
// be reached sooner.
// there's some other stuff about using the number of disconnects
// as a counter, but i'm jot really sure i followed it.
// TODO: If we min-sized cliques to visit, then theoretically, we
// should be able to stop recursing if the clique falls below that
// size - maybe?
// otherwise, iterate over candidates and and test
// for maxmimal cliquiness.
typename Container::iterator i, j;
for(i = cands.begin(); i != cands.end(); ) {
Vertex candidate = *i;
// add the candidate to the clique (keeping the iterator!)
// typename Clique::iterator ci = clique.insert(clique.end(), candidate);
clique.push_back(candidate);
// remove it from the candidate set
i = cands.erase(i);
// build new candidate and not sets by removing all vertices
// that are not connected to the current candidate vertex.
// these actually invert the operation, adding them to the new
// sets if the vertices are connected. its semantically the same.
Container new_cands, new_nots;
filter_unconnected_vertices(g, candidate, cands, new_cands);
filter_unconnected_vertices(g, candidate, nots, new_nots);
if(new_cands.empty() && new_nots.empty()) {
// our current clique is maximal since there's nothing
// that's connected that we haven't already visited. If
// the clique is below our radar, then we won't visit it.
if(clique.size() >= min) {
vis.clique(clique, g);
}
}
else {
// recurse to explore the new candidates
extend_clique(g, clique, new_cands, new_nots, vis, min);
}
// we're done with this vertex, so we need to move it
// to the nots, and remove the candidate from the clique.
nots.push_back(candidate);
clique.pop_back();
}
}
} /* namespace detail */
template <typename Graph, typename Visitor>
inline void
bron_kerbosch_all_cliques(const Graph& g, Visitor vis, std::size_t min)
{
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph> )); // Structural requirement only
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
typedef std::vector<Vertex> VertexSet;
typedef std::deque<Vertex> Clique;
BOOST_CONCEPT_ASSERT(( CliqueVisitorConcept<Visitor,Clique,Graph> ));
// NOTE: We're using a deque to implement the clique, because it provides
// constant inserts and removals at the end and also a constant size.
VertexIterator i, end;
boost::tie(i, end) = vertices(g);
VertexSet cands(i, end); // start with all vertices as candidates
VertexSet nots; // start with no vertices visited
Clique clique; // the first clique is an empty vertex set
detail::extend_clique(g, clique, cands, nots, vis, min);
}
// NOTE: By default the minimum number of vertices per clique is set at 2
// because singleton cliques aren't really very interesting.
template <typename Graph, typename Visitor>
inline void
bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
{ bron_kerbosch_all_cliques(g, vis, 2); }
template <typename Graph>
inline std::size_t
bron_kerbosch_clique_number(const Graph& g)
{
std::size_t ret = 0;
bron_kerbosch_all_cliques(g, find_max_clique(ret));
return ret;
}
} /* namespace boost */
#endif
|