1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <cstdlib>
#include <iostream>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
// return a random float between lo and hi
float rand_float(float lo, float hi)
{
float x = (float) std::rand() / (float) RAND_MAX;
return (1.0f - x) * lo + x * hi;
}
// this example demostrates a black-scholes option pricing kernel.
int main()
{
// number of options
const int N = 4000000;
// black-scholes parameters
const float risk_free_rate = 0.02f;
const float volatility = 0.30f;
// get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
std::cout << "device: " << gpu.name() << std::endl;
// initialize option data on host
std::vector<float> stock_price_data(N);
std::vector<float> option_strike_data(N);
std::vector<float> option_years_data(N);
std::srand(5347);
for(int i = 0; i < N; i++){
stock_price_data[i] = rand_float(5.0f, 30.0f);
option_strike_data[i] = rand_float(1.0f, 100.0f);
option_years_data[i] = rand_float(0.25f, 10.0f);
}
// create memory buffers on the device
compute::vector<float> call_result(N, context);
compute::vector<float> put_result(N, context);
compute::vector<float> stock_price(N, context);
compute::vector<float> option_strike(N, context);
compute::vector<float> option_years(N, context);
// copy initial values to the device
compute::copy_n(stock_price_data.begin(), N, stock_price.begin(), queue);
compute::copy_n(option_strike_data.begin(), N, option_strike.begin(), queue);
compute::copy_n(option_years_data.begin(), N, option_years.begin(), queue);
// source code for black-scholes program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
// approximation of the cumulative normal distribution function
static float cnd(float d)
{
const float A1 = 0.319381530f;
const float A2 = -0.356563782f;
const float A3 = 1.781477937f;
const float A4 = -1.821255978f;
const float A5 = 1.330274429f;
const float RSQRT2PI = 0.39894228040143267793994605993438f;
float K = 1.0f / (1.0f + 0.2316419f * fabs(d));
float cnd =
RSQRT2PI * exp(-0.5f * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
if(d > 0){
cnd = 1.0f - cnd;
}
return cnd;
}
// black-scholes option pricing kernel
__kernel void black_scholes(__global float *call_result,
__global float *put_result,
__global const float *stock_price,
__global const float *option_strike,
__global const float *option_years,
float risk_free_rate,
float volatility)
{
const uint opt = get_global_id(0);
float S = stock_price[opt];
float X = option_strike[opt];
float T = option_years[opt];
float R = risk_free_rate;
float V = volatility;
float sqrtT = sqrt(T);
float d1 = (log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
float d2 = d1 - V * sqrtT;
float CNDD1 = cnd(d1);
float CNDD2 = cnd(d2);
float expRT = exp(-R * T);
call_result[opt] = S * CNDD1 - X * expRT * CNDD2;
put_result[opt] = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);
}
);
// build black-scholes program
compute::program program = compute::program::create_with_source(source, context);
program.build();
// setup black-scholes kernel
compute::kernel kernel(program, "black_scholes");
kernel.set_arg(0, call_result);
kernel.set_arg(1, put_result);
kernel.set_arg(2, stock_price);
kernel.set_arg(3, option_strike);
kernel.set_arg(4, option_years);
kernel.set_arg(5, risk_free_rate);
kernel.set_arg(6, volatility);
// execute black-scholes kernel
queue.enqueue_1d_range_kernel(kernel, 0, N, 0);
// print out the first option's put and call prices
float call0, put0;
compute::copy_n(put_result.begin(), 1, &put0, queue);
compute::copy_n(call_result.begin(), 1, &call0, queue);
std::cout << "option 0 call price: " << call0 << std::endl;
std::cout << "option 0 put price: " << put0 << std::endl;
// due to the differences in the random-number generators between Operating Systems
// and/or compilers, we will get different "expected" results for this example
#ifdef __APPLE__
double expected_call0 = 0.000249461;
double expected_put0 = 26.2798;
#elif _MSC_VER
double expected_call0 = 8.21412;
double expected_put0 = 2.25904;
#else
double expected_call0 = 0.0999f;
double expected_put0 = 43.0524f;
#endif
// check option prices
if(std::abs(call0 - expected_call0) > 1e-4 || std::abs(put0 - expected_put0) > 1e-4){
std::cerr << "error: option prices are wrong" << std::endl;
return -1;
}
return 0;
}
|