1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
//---------------------------------------------------------------------------//
// Copyright (c) 2014 Benoit Dequidt <benoit.dequidt@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <cstdlib>
#include <boost/program_options.hpp>
#include <boost/compute/core.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
using compute::uint_;
const uint_ TILE_DIM = 32;
const uint_ BLOCK_ROWS = 8;
// generate a copy kernel program
compute::kernel make_copy_kernel(const compute::context& context)
{
// source for the copy_kernel program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void copy_kernel(__global const float *src, __global float *dst)
{
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
for(uint i = 0 ; i < TILE_DIM ; i+= BLOCK_ROWS){
dst[(y+i)*width +x] = src[(y+i)*width + x];
}
}
);
// setup compilation flags for the copy program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the copy program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the copy kernel
return program.create_kernel("copy_kernel");
}
// generate a naive transpose kernel
compute::kernel make_naive_transpose_kernel(const compute::context& context)
{
// source for the naive_transpose kernel
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void naive_transpose(__global const float *src, __global float *dst)
{
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
dst[x*width + y+i] = src[(y+i)*width + x];
}
}
);
// setup compilation flags for the naive_transpose program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the naive_transpose program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the naive_transpose kernel
return program.create_kernel("naive_transpose");
}
// generates a coalesced transpose kernel
compute::kernel make_coalesced_transpose_kernel(const compute::context& context)
{
// source for the coalesced_transpose kernel
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void coalesced_transpose(__global const float *src, __global float *dst)
{
__local float tile[TILE_DIM][TILE_DIM];
// compute indexes
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
// load inside local memory
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
}
barrier(CLK_LOCAL_MEM_FENCE);
// transpose indexes
x = get_group_id(1) * TILE_DIM + get_local_id(0);
y = get_group_id(0) * TILE_DIM + get_local_id(1);
// write output from local memory
for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
}
}
);
// setup compilation flags for the coalesced_transpose program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the coalesced_transpose program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return coalesced_transpose kernel
return program.create_kernel("coalesced_transpose");
}
// generate a coalesced withtout bank conflicts kernel
compute::kernel make_coalesced_no_bank_conflicts_kernel(const compute::context& context)
{
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void coalesced_no_bank_conflicts(__global const float *src, __global float *dst)
{
// TILE_DIM+1 is here to avoid bank conflicts in local memory
__local float tile[TILE_DIM][TILE_DIM+1];
// compute indexes
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
// load inside local memory
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
}
barrier(CLK_LOCAL_MEM_FENCE);
// transpose indexes
x = get_group_id(1) * TILE_DIM + get_local_id(0);
y = get_group_id(0) * TILE_DIM + get_local_id(1);
// write output from local memory
for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
}
}
);
// setup compilation flags for the coalesced_no_bank_conflicts program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the coalesced_no_bank_conflicts program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the coalesced_no_bank_conflicts kernel
return program.create_kernel("coalesced_no_bank_conflicts");
}
// compare 'expectedResult' to 'transposedMatrix'. prints an error message if not equal.
bool check_transposition(const std::vector<float>& expectedResult,
uint_ size,
const std::vector<float>& transposedMatrix)
{
for(uint_ i = 0 ; i < size ; ++i){
if(expectedResult[i] != transposedMatrix[i]){
std::cout << "idx = " << i << " , expected " << expectedResult[i]
<< " , got " << transposedMatrix[i] << std::endl;
std::cout << "FAILED" << std::endl;
return false;
}
}
return true;
}
// generate a matrix inside 'in' and do the tranposition inside 'out'
void generate_matrix(std::vector<float>& in, std::vector<float>& out, uint_ rows, uint_ cols)
{
// generate a matrix
for(uint_ i = 0 ; i < rows ; ++i){
for(uint_ j = 0 ; j < cols ; ++j){
in[i*cols + j] = i*cols + j;
}
}
// store transposed result
for(uint_ j = 0; j < cols ; ++j){
for(uint_ i = 0 ; i < rows ; ++i){
out[j*rows + i] = in[i*cols + j];
}
}
}
// neccessary for 64-bit integer on win32
#ifdef _WIN32
#define uint64_t unsigned __int64
#endif
int main(int argc, char *argv[])
{
// setup command line arguments
po::options_description options("options");
options.add_options()
("help", "show usage instructions")
("rows", po::value<uint_>()->default_value(4096), "number of matrix rows")
("cols", po::value<uint_>()->default_value(4096), "number of matrix columns")
;
// parse command line
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, options), vm);
po::notify(vm);
// check command line arguments
if(vm.count("help")){
std::cout << options << std::endl;
return 0;
}
// get number rows and columns for the matrix
const uint_ rows = vm["rows"].as<uint_>();
const uint_ cols = vm["cols"].as<uint_>();
// get the default device
compute::device device = compute::system::default_device();
// print out device name and matrix information
std::cout << "Device: " << device.name() << std::endl;
std::cout << "Matrix Size: " << rows << "x" << cols << std::endl;
std::cout << "Grid Size: " << rows/TILE_DIM << "x" << cols/TILE_DIM << " blocks" << std::endl;
std::cout << "Local Size: " << TILE_DIM << "x" << BLOCK_ROWS << " threads" << std::endl;
std::cout << std::endl;
// On OSX this example does not work on CPU devices
#if defined(__APPLE__)
if(device.type() & compute::device::cpu) {
std::cout << "On OSX this example does not work on CPU devices" << std::endl;
return 0;
}
#endif
const size_t global_work_size[2] = {rows, cols*BLOCK_ROWS/TILE_DIM};
const size_t local_work_size[2] = {TILE_DIM, BLOCK_ROWS};
// setup input data on the host
const uint_ size = rows * cols;
std::vector<float> h_input(size);
std::vector<float> h_output(size);
std::vector<float> expectedResult(size);
generate_matrix(h_input, expectedResult, rows, cols);
// create a context for the device
compute::context context(device);
// device vectors
compute::vector<float> d_input(size, context);
compute::vector<float> d_output(size, context);
// command_queue with profiling
compute::command_queue queue(context, device, compute::command_queue::enable_profiling);
// copy input data
compute::copy(h_input.begin(), h_input.end(), d_input.begin(), queue);
// simple copy kernel
std::cout << "Testing copy_kernel:" << std::endl;
compute::kernel kernel = make_copy_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
compute::event start;
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
uint64_t elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(h_input, rows*cols, h_output);
std::cout << std::endl;
// naive_transpose kernel
std::cout << "Testing naive_transpose:" << std::endl;
kernel = make_naive_transpose_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
// coalesced_transpose kernel
std::cout << "Testing coalesced_transpose:" << std::endl;
kernel = make_coalesced_transpose_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
// coalesced_no_bank_conflicts kernel
std::cout << "Testing coalesced_no_bank_conflicts:" << std::endl;
kernel = make_coalesced_no_bank_conflicts_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
return 0;
}
|