1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Mageswaran.D <mageswaran1989@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <string>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/interop/opencv/core.hpp>
#include <boost/compute/interop/opencv/highgui.hpp>
#include <boost/compute/utility/source.hpp>
#include <boost/program_options.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
// Create convolution program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE (
__kernel void convolution(__read_only image2d_t sourceImage,
__write_only image2d_t outputImage,
__constant float* filter,
int filterWidth)
{
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_NEAREST;
// Store each work-item's unique row and column
int x = get_global_id(0);
int y = get_global_id(1);
// Half the width of the filter is needed for indexing
// memory later
int halfWidth = (int)(filterWidth/2);
// All accesses to images return data as four-element vector
// (i.e., float4).
float4 sum = {0.0f, 0.0f, 0.0f, 0.0f};
// Iterator for the filter
int filterIdx = 0;
// Each work-item iterates around its local area based on the
// size of the filter
int2 coords; // Coordinates for accessing the image
// Iterate the filter rows
for(int i = -halfWidth; i <= halfWidth; i++)
{
coords.y = y + i;
// Iterate over the filter columns
for(int j = -halfWidth; j <= halfWidth; j++)
{
coords.x = x + j;
float4 pixel;
// Read a pixel from the image.
// Work on a channel
pixel = read_imagef(sourceImage, sampler, coords);
sum.x += pixel.x * filter[filterIdx++];
//sum.y += pixel.y * filter[filterIdx++];
//sum.z += pixel.z * filter[filterIdx++];
}
}
barrier(CLK_GLOBAL_MEM_FENCE);
// Copy the data to the output image if the
// work-item is in bounds
if(y < get_image_height(sourceImage) &&
x < get_image_width(sourceImage))
{
coords.x = x;
coords.y = y;
//Same channel is copied in all three channels
//write_imagef(outputImage, coords,
// (float4)(sum.x,sum.x,sum.x,1.0f));
write_imagef(outputImage, coords, sum);
}
}
);
// This example shows how to read two images or use camera
// with OpenCV, transfer the frames to the GPU,
// and apply a convolution written in OpenCL
int main(int argc, char *argv[])
{
///////////////////////////////////////////////////////////////////////////
// setup the command line arguments
po::options_description desc;
desc.add_options()
("help", "show available options")
("camera", po::value<int>()->default_value(-1),
"if not default camera, specify a camera id")
("image", po::value<std::string>(), "path to image file");
// Parse the command lines
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//check the command line arguments
if(vm.count("help"))
{
std::cout << desc << std::endl;
return 0;
}
///////////////////////////////////////////////////////////////////////////
//OpenCV variables
cv::Mat cv_mat;
cv::VideoCapture cap; //OpenCV camera handle.
//Filter Variables
float filter[9] = {
-1.0, 0.0, 1.0,
-2.0, 0.0, 2.0,
-1.0, 0.0, 1.0,
};
// The convolution filter is 3x3
int filterWidth = 3;
//OpenCL variables
// Get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
compute::buffer dev_filter(context, sizeof(filter),
compute::memory_object::read_only |
compute::memory_object::copy_host_ptr,
filter);
compute::program filter_program =
compute::program::create_with_source(source, context);
try
{
filter_program.build();
}
catch(compute::opencl_error e)
{
std::cout<<"Build Error: "<<std::endl
<<filter_program.build_log();
return -1;
}
// create fliter kernel and set arguments
compute::kernel filter_kernel(filter_program, "convolution");
///////////////////////////////////////////////////////////////////////////
//check for image paths
if(vm.count("image"))
{
// Read image with OpenCV
cv_mat = cv::imread(vm["image"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!cv_mat.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
}
else //by default use camera
{
//open camera
cap.open(vm["camera"].as<int>());
// read first frame
cap >> cv_mat;
if(!cv_mat.data){
std::cerr << "failed to capture frame" << std::endl;
return -1;
}
}
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(cv_mat, cv_mat, CV_BGR2BGRA);
// Transfer image/frame data to gpu
compute::image2d dev_input_image =
compute::opencv_create_image2d_with_mat(
cv_mat, compute::image2d::read_write, queue
);
// Create output image
// Be sure what will be your ouput image/frame size
compute::image2d dev_output_image(
context,
dev_input_image.width(),
dev_input_image.height(),
dev_input_image.format(),
compute::image2d::write_only
);
filter_kernel.set_arg(0, dev_input_image);
filter_kernel.set_arg(1, dev_output_image);
filter_kernel.set_arg(2, dev_filter);
filter_kernel.set_arg(3, filterWidth);
// run flip kernel
size_t origin[2] = { 0, 0 };
size_t region[2] = { dev_input_image.width(),
dev_input_image.height() };
///////////////////////////////////////////////////////////////////////////
queue.enqueue_nd_range_kernel(filter_kernel, 2, origin, region, 0);
//check for image paths
if(vm.count("image"))
{
// show host image
cv::imshow("Original Image", cv_mat);
// show gpu image
compute::opencv_imshow("Convoluted Image", dev_output_image, queue);
// wait and return
cv::waitKey(0);
}
else
{
char key = '\0';
while(key != 27) //check for escape key
{
cap >> cv_mat;
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(cv_mat, cv_mat, CV_BGR2BGRA);
// Update the device image memory with current frame data
compute::opencv_copy_mat_to_image(cv_mat,
dev_input_image,queue);
// Run the kernel on the device
queue.enqueue_nd_range_kernel(filter_kernel, 2, origin, region, 0);
// Show host image
cv::imshow("Camera Frame", cv_mat);
// Show GPU image
compute::opencv_imshow("Convoluted Frame", dev_output_image, queue);
// wait
key = cv::waitKey(10);
}
}
return 0;
}
|