1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Mageswaran.D <mageswaran1989@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
//Code sample for calculating histogram using OpenCL and
//displaying image histogram in OpenCV.
#include <iostream>
#include <string>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <boost/compute/source.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/interop/opencv/core.hpp>
#include <boost/compute/interop/opencv/highgui.hpp>
#include <boost/program_options.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
// number of bins
int histSize = 256;
// Set the ranges ( for B,G,R) )
// TryOut: consider the range in kernel calculation
float range[] = { 0, 256 } ;
const float* histRange = { range };
// Create naive histogram program
// Needs "cl_khr_local_int32_base_atomics" extension
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE (
__kernel void histogram(read_only image2d_t src_image,
__global int* b_hist,
__global int* g_hist,
__global int* r_hist)
{
sampler_t sampler =( CLK_NORMALIZED_COORDS_FALSE |
CLK_FILTER_NEAREST |
CLK_ADDRESS_CLAMP_TO_EDGE);
int image_width = get_image_width(src_image);
int image_height = get_image_height(src_image);
int2 coords = (int2)(get_global_id(0), get_global_id(1));
float4 pixel = read_imagef(src_image,sampler, coords);
//boundary condition
if ((coords.x < image_width) && (coords.y < image_height))
{
uchar indx_x, indx_y, indx_z;
indx_x = convert_uchar_sat(pixel.x * 255.0f);
indx_y = convert_uchar_sat(pixel.y * 255.0f);
indx_z = convert_uchar_sat(pixel.z * 255.0f);
atomic_inc(&b_hist[(uint)indx_z]);
atomic_inc(&g_hist[(uint)indx_y]);
atomic_inc(&r_hist[(uint)indx_x]);
}
}
);
inline void showHistogramWindow(cv::Mat &b_hist, cv::Mat &g_hist, cv::Mat &r_hist,
std::string window_name)
{
// Draw the histograms for B, G and R
int hist_w = 1024;
int hist_h = 768;
int bin_w = cvRound((double)hist_w/histSize);
cv::Mat histImage(hist_h, hist_w, CV_8UC3, cv::Scalar(0,0,0));
// Normalize the result to [ 0, histImage.rows ]
cv::normalize(b_hist, b_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
cv::normalize(g_hist, g_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
cv::normalize(r_hist, r_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
// Draw for each channel
for (int i = 1; i < histSize; i++ )
{
cv::line(histImage,
cv::Point(bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1))),
cv::Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
cv::Scalar(255, 0, 0),
2,
8,
0);
cv::line(histImage,
cv::Point(bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1))),
cv::Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
cv::Scalar(0, 255, 0),
2,
8,
0);
cv::line(histImage,
cv::Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1))),
cv::Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
cv::Scalar( 0, 0, 255),
2,
8,
0);
}
// Display
cv::namedWindow(window_name, CV_WINDOW_AUTOSIZE );
cv::imshow(window_name, histImage );
}
//Get the device context
//Create GPU array/vector
//Copy the image & set up the kernel
//Execute the kernel
//Copy GPU data back to CPU cv::Mat data pointer
//OpenCV conversion for convienient display
void calculateHistogramUsingCL(cv::Mat src, compute::command_queue &queue)
{
compute::context context = queue.get_context();
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(src, src, CV_BGR2BGRA);
//3 channels & 256 bins : alpha channel is ignored
compute::vector<int> gpu_b_hist(histSize, context);
compute::vector<int> gpu_g_hist(histSize, context);
compute::vector<int> gpu_r_hist(histSize, context);
// Transfer image to gpu
compute::image2d gpu_src =
compute::opencv_create_image2d_with_mat(
src, compute::image2d::read_only,
queue
);
compute::program histogram_program =
compute::program::create_with_source(source, context);
histogram_program.build();
// create histogram kernel and set arguments
compute::kernel histogram_kernel(histogram_program, "histogram");
histogram_kernel.set_arg(0, gpu_src);
histogram_kernel.set_arg(1, gpu_b_hist.get_buffer());
histogram_kernel.set_arg(2, gpu_g_hist.get_buffer());
histogram_kernel.set_arg(3, gpu_r_hist.get_buffer());
// run histogram kernel
// each kernel thread updating red, green & blue bins
size_t origin[2] = { 0, 0 };
size_t region[2] = { gpu_src.width(),
gpu_src.height() };
queue.enqueue_nd_range_kernel(histogram_kernel, 2, origin, region, 0);
//Make sure kernel get executed and data copied back
queue.finish();
//create Mat and copy GPU bins to CPU memory
cv::Mat b_hist(256, 1, CV_32SC1);
compute::copy(gpu_b_hist.begin(), gpu_b_hist.end(), b_hist.data, queue);
cv::Mat g_hist(256, 1, CV_32SC1);
compute::copy(gpu_g_hist.begin(), gpu_g_hist.end(), g_hist.data, queue);
cv::Mat r_hist(256, 1, CV_32SC1);
compute::copy(gpu_r_hist.begin(), gpu_r_hist.end(), r_hist.data, queue);
b_hist.convertTo(b_hist, CV_32FC1); //converted for displaying
g_hist.convertTo(g_hist, CV_32FC1);
r_hist.convertTo(r_hist, CV_32FC1);
showHistogramWindow(b_hist, g_hist, r_hist, "Histogram");
}
int main( int argc, char** argv )
{
// Get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
cv::Mat src;
// setup the command line arguments
po::options_description desc;
desc.add_options()
("help", "show available options")
("image", po::value<std::string>(), "path to image file");
// Parse the command lines
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//check the command line arguments
if(vm.count("help"))
{
std::cout << desc << std::endl;
return 0;
}
//check for image paths
if(vm.count("image"))
{
// Read image with OpenCV
src = cv::imread(vm["image"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!src.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
calculateHistogramUsingCL(src, queue);
cv::imshow("Image", src);
cv::waitKey(0);
}
else
{
std::cout << desc << std::endl;
return 0;
}
return 0;
}
|