1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Mageswaran.D <mageswaran1989@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <string>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/interop/opencv/core.hpp>
#include <boost/compute/interop/opencv/highgui.hpp>
#include <boost/compute/utility/source.hpp>
#include <boost/program_options.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
// Create naive optical flow program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE (
const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE;
__kernel void optical_flow (
read_only
image2d_t current_image,
read_only image2d_t previous_image,
write_only image2d_t optical_flow,
const float scale,
const float offset,
const float lambda,
const float threshold )
{
int2 coords = (int2)(get_global_id(0), get_global_id(1));
float4 current_pixel = read_imagef(current_image,
sampler,
coords);
float4 previous_pixel = read_imagef(previous_image,
sampler,
coords);
int2 x1 = (int2)(offset, 0.f);
int2 y1 = (int2)(0.f, offset);
//get the difference
float4 curdif = previous_pixel - current_pixel;
//calculate the gradient
//Image 2 first
float4 gradx = read_imagef(previous_image,
sampler,
coords+x1) -
read_imagef(previous_image,
sampler,
coords-x1);
//Image 1
gradx += read_imagef(current_image,
sampler,
coords+x1) -
read_imagef(current_image,
sampler,
coords-x1);
//Image 2 first
float4 grady = read_imagef(previous_image,
sampler,
coords+y1) -
read_imagef(previous_image,
sampler,
coords-y1);
//Image 1
grady += read_imagef(current_image,
sampler,
coords+y1) -
read_imagef(current_image,
sampler,
coords-y1);
float4 sqr = (gradx*gradx) + (grady*grady) +
(float4)(lambda,lambda, lambda, lambda);
float4 gradmag = sqrt(sqr);
///////////////////////////////////////////////////
float4 vx = curdif * (gradx / gradmag);
float vxd = vx.x;//assumes greyscale
//format output for flowrepos, out(-x,+x,-y,+y)
float2 xout = (float2)(fmax(vxd,0.f),fabs(fmin(vxd,0.f)));
xout *= scale;
///////////////////////////////////////////////////
float4 vy = curdif*(grady/gradmag);
float vyd = vy.x;//assumes greyscale
//format output for flowrepos, out(-x,+x,-y,+y)
float2 yout = (float2)(fmax(vyd,0.f),fabs(fmin(vyd,0.f)));
yout *= scale;
///////////////////////////////////////////////////
float4 out = (float4)(xout, yout);
float cond = (float)isgreaterequal(length(out), threshold);
out *= cond;
write_imagef(optical_flow, coords, out);
}
);
// This example shows how to read two images or use camera
// with OpenCV, transfer the frames to the GPU,
// and apply a naive optical flow algorithm
// written in OpenCL
int main(int argc, char *argv[])
{
// setup the command line arguments
po::options_description desc;
desc.add_options()
("help", "show available options")
("camera", po::value<int>()->default_value(-1),
"if not default camera, specify a camera id")
("image1", po::value<std::string>(), "path to image file 1")
("image2", po::value<std::string>(), "path to image file 2");
// Parse the command lines
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//check the command line arguments
if(vm.count("help"))
{
std::cout << desc << std::endl;
return 0;
}
//OpenCV variables
cv::Mat previous_cv_image;
cv::Mat current_cv_image;
cv::VideoCapture cap; //OpenCV camera handle
//check for image paths
if(vm.count("image1") && vm.count("image2"))
{
// Read image 1 with OpenCV
previous_cv_image = cv::imread(vm["image1"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!previous_cv_image.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
// Read image 2 with opencv
current_cv_image = cv::imread(vm["image2"].as<std::string>(),
CV_LOAD_IMAGE_COLOR);
if(!current_cv_image.data){
std::cerr << "Failed to load image" << std::endl;
return -1;
}
}
else //by default use camera
{
//open camera
cap.open(vm["camera"].as<int>());
// read first frame
cap >> previous_cv_image;
if(!previous_cv_image.data){
std::cerr << "failed to capture frame" << std::endl;
return -1;
}
// read second frame
cap >> current_cv_image;
if(!current_cv_image.data){
std::cerr << "failed to capture frame" << std::endl;
return -1;
}
}
// Get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(previous_cv_image, previous_cv_image, CV_BGR2BGRA);
cv::cvtColor(current_cv_image, current_cv_image, CV_BGR2BGRA);
// Transfer image to gpu
compute::image2d dev_previous_image =
compute::opencv_create_image2d_with_mat(
previous_cv_image, compute::image2d::read_write, queue
);
// Transfer image to gpu
compute::image2d dev_current_image =
compute::opencv_create_image2d_with_mat(
current_cv_image, compute::image2d::read_write, queue
);
// Create output image
compute::image2d dev_output_image(
context,
dev_previous_image.width(),
dev_previous_image.height(),
dev_previous_image.format(),
compute::image2d::write_only
);
compute::program optical_program =
compute::program::create_with_source(source, context);
optical_program.build();
// create flip kernel and set arguments
compute::kernel optical_kernel(optical_program, "optical_flow");
float scale = 10;
float offset = 1;
float lambda = 0.0025;
float threshold = 1.0;
optical_kernel.set_arg(0, dev_previous_image);
optical_kernel.set_arg(1, dev_current_image);
optical_kernel.set_arg(2, dev_output_image);
optical_kernel.set_arg(3, scale);
optical_kernel.set_arg(4, offset);
optical_kernel.set_arg(5, lambda);
optical_kernel.set_arg(6, threshold);
// run flip kernel
size_t origin[2] = { 0, 0 };
size_t region[2] = { dev_previous_image.width(),
dev_previous_image.height() };
queue.enqueue_nd_range_kernel(optical_kernel, 2, origin, region, 0);
//check for image paths
if(vm.count("image1") && vm.count("image2"))
{
// show host image
cv::imshow("Previous Frame", previous_cv_image);
cv::imshow("Current Frame", current_cv_image);
// show gpu image
compute::opencv_imshow("filtered image", dev_output_image, queue);
// wait and return
cv::waitKey(0);
}
else
{
char key = '\0';
while(key != 27) //check for escape key
{
cap >> current_cv_image;
// Convert image to BGRA (OpenCL requires 16-byte aligned data)
cv::cvtColor(current_cv_image, current_cv_image, CV_BGR2BGRA);
// Update the device image memory with current frame data
compute::opencv_copy_mat_to_image(previous_cv_image,
dev_previous_image,
queue);
compute::opencv_copy_mat_to_image(current_cv_image,
dev_current_image,
queue);
// Run the kernel on the device
queue.enqueue_nd_range_kernel(optical_kernel, 2, origin, region, 0);
// Show host image
cv::imshow("Previous Frame", previous_cv_image);
cv::imshow("Current Frame", current_cv_image);
// Show GPU image
compute::opencv_imshow("filtered image", dev_output_image, queue);
// Copy current frame container to previous frame container
current_cv_image.copyTo(previous_cv_image);
// wait
key = cv::waitKey(10);
}
}
return 0;
}
|