1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
//---------------------------------------------------------------------------//
// Copyright (c) 2014 Benoit Dequidt <benoit.dequidt@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <cstdlib>
#include <boost/compute/core.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/inclusive_scan.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
/// warning precision is not precise due
/// to the float error accumulation when size is large enough
/// for more precision use double
/// or a kahan sum else results can diverge
/// from the CPU implementation
compute::program make_sma_program(const compute::context& context)
{
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void SMA(__global const float *scannedValues, int size, __global float *output, int wSize)
{
const int gid = get_global_id(0);
float cumValues = 0.f;
int endIdx = gid + wSize/2;
int startIdx = gid -1 - wSize/2;
if(endIdx > size -1)
endIdx = size -1;
cumValues += scannedValues[endIdx];
if(startIdx < 0)
startIdx = -1;
else
cumValues -= scannedValues[startIdx];
output[gid] =(float)( cumValues / ( float )(endIdx - startIdx));
}
);
// create sma program
return compute::program::build_with_source(source,context);
}
bool check_results(const std::vector<float>& values, const std::vector<float>& smoothValues, unsigned int wSize)
{
int size = values.size();
if(size != (int)smoothValues.size()) return false;
int semiWidth = wSize/2;
bool res = true;
for(int idx = 0 ; idx < size ; ++idx)
{
int start = (std::max)(idx - semiWidth,0);
int end = (std::min)(idx + semiWidth,size-1);
float res = 0;
for(int j = start ; j <= end ; ++j)
{
res+= values[j];
}
res /= float(end - start +1);
if(std::abs(res-smoothValues[idx]) > 1e-3)
{
std::cout << "idx = " << idx << " -- expected = " << res << " -- result = " << smoothValues[idx] << std::endl;
res = false;
}
}
return res;
}
// generate a uniform law over [0,10]
float myRand()
{
static const double divisor = double(RAND_MAX)+1.;
return double(rand())/divisor * 10.;
}
int main()
{
unsigned int size = 1024;
// wSize must be odd
unsigned int wSize = 21;
// get the default device
compute::device device = compute::system::default_device();
// create a context for the device
compute::context context(device);
// get the program
compute::program program = make_sma_program(context);
// create vector of random numbers on the host
std::vector<float> host_vector(size);
std::vector<float> host_result(size);
std::generate(host_vector.begin(), host_vector.end(), myRand);
compute::vector<float> a(size,context);
compute::vector<float> b(size,context);
compute::vector<float> c(size,context);
compute::command_queue queue(context, device);
compute::copy(host_vector.begin(),host_vector.end(),a.begin(),queue);
// scan values
compute::inclusive_scan(a.begin(),a.end(),b.begin(),queue);
// sma kernel
compute::kernel kernel(program, "SMA");
kernel.set_arg(0,b.get_buffer());
kernel.set_arg(1,(int)b.size());
kernel.set_arg(2,c.get_buffer());
kernel.set_arg(3,(int)wSize);
using compute::uint_;
uint_ tpb = 128;
uint_ workSize = size;
queue.enqueue_1d_range_kernel(kernel,0,workSize,tpb);
compute::copy(c.begin(),c.end(),host_result.begin(),queue);
bool res = check_results(host_vector,host_result,wSize);
std::string status = res ? "results are equivalent" : "GPU results differs from CPU one's";
std::cout << status << std::endl;
return 0;
}
|