File: perf_saxpy.cpp

package info (click to toggle)
boost1.62 1.62.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (162 lines) | stat: -rw-r--r-- 5,267 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//

#include <algorithm>
#include <iostream>
#include <vector>

#include <boost/program_options.hpp>

#include <boost/compute/lambda.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/container/vector.hpp>

#include "perf.hpp"

namespace po = boost::program_options;
namespace compute = boost::compute;

float rand_float()
{
    return (float(rand()) / float(RAND_MAX)) * 1000.f;
}

template<class T>
double perf_saxpy(const compute::vector<T>& x,
                  const compute::vector<T>& y,
                  const T alpha,
                  const size_t trials,
                  compute::command_queue& queue)
{
    // create vector on the device to store the result
    compute::vector<T> result(x.size(), queue.get_context());

    perf_timer t;
    for(size_t trial = 0; trial < trials; trial++){
        compute::fill(result.begin(), result.end(), T(0), queue);
        queue.finish();

        t.start();

        using compute::lambda::_1;
        using compute::lambda::_2;

        compute::transform(
            x.begin(), x.end(), y.begin(), result.begin(), alpha * _1 + _2, queue
        );

        queue.finish();
        t.stop();
    }

    return t.min_time();
}

template<class T>
void tune_saxpy(const compute::vector<T>& x,
                const compute::vector<T>& y,
                const T alpha,
                const size_t trials,
                compute::command_queue& queue)
{
    boost::shared_ptr<compute::detail::parameter_cache>
        params = compute::detail::parameter_cache::get_global_cache(queue.get_device());

    const std::string cache_key =
        std::string("__boost_copy_kernel_") + boost::lexical_cast<std::string>(sizeof(T));

    const compute::uint_ tpbs[] = { 4, 8, 16, 32, 64, 128, 256, 512, 1024 };
    const compute::uint_ vpts[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };

    double min_time = (std::numeric_limits<double>::max)();
    compute::uint_ best_tpb = 0;
    compute::uint_ best_vpt = 0;

    for(size_t i = 0; i < sizeof(tpbs) / sizeof(*tpbs); i++){
        params->set(cache_key, "tpb", tpbs[i]);
        for(size_t j = 0; j < sizeof(vpts) / sizeof(*vpts); j++){
            params->set(cache_key, "vpt", vpts[j]);

            try {
                const double t = perf_saxpy(x, y, alpha, trials, queue);
                if(t < min_time){
                    best_tpb = tpbs[i];
                    best_vpt = vpts[j];
                    min_time = t;
                }
            }
            catch(compute::opencl_error&){
                // invalid parameters for this device, skip
            }
        }
    }

    // store optimal parameters
    params->set(cache_key, "tpb", best_tpb);
    params->set(cache_key, "vpt", best_vpt);
}

int main(int argc, char *argv[])
{
    // setup command line arguments
    po::options_description options("options");
    options.add_options()
        ("help", "show usage instructions")
        ("size", po::value<size_t>()->default_value(8192), "input size")
        ("trials", po::value<size_t>()->default_value(3), "number of trials to run")
        ("tune", "run tuning procedure")
        ("alpha", po::value<double>()->default_value(2.5), "saxpy alpha value")
    ;
    po::positional_options_description positional_options;
    positional_options.add("size", 1);

    // parse command line
    po::variables_map vm;
    po::store(
        po::command_line_parser(argc, argv)
            .options(options).positional(positional_options).run(),
        vm
    );
    po::notify(vm);

    const size_t size = vm["size"].as<size_t>();
    const size_t trials = vm["trials"].as<size_t>();
    const float alpha = vm["alpha"].as<double>();
    std::cout << "size: " << size << std::endl;

    // setup context and queue for the default device
    compute::device device = boost::compute::system::default_device();
    compute::context context(device);
    compute::command_queue queue(context, device);
    std::cout << "device: " << device.name() << std::endl;

    // create vector of random numbers on the host
    std::vector<float> host_x(size);
    std::vector<float> host_y(size);
    std::generate(host_x.begin(), host_x.end(), rand_float);
    std::generate(host_y.begin(), host_y.end(), rand_float);

    // create vector on the device and copy the data
    compute::vector<float> x(host_x.begin(), host_x.end(), queue);
    compute::vector<float> y(host_y.begin(), host_y.end(), queue);

    // run tuning proceure (if requested)
    if(vm.count("tune")){
        tune_saxpy(x, y, alpha, trials, queue);
    }

    // run benchmark
    double t = perf_saxpy(x, y, alpha, trials, queue);
    std::cout << "time: " << t / 1e6 << " ms" << std::endl;

    return 0;
}