File: perf_sort.cpp

package info (click to toggle)
boost1.62 1.62.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (130 lines) | stat: -rw-r--r-- 4,075 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//

#include <algorithm>
#include <iostream>
#include <vector>

#include <boost/program_options.hpp>

#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/sort.hpp>
#include <boost/compute/algorithm/is_sorted.hpp>
#include <boost/compute/container/vector.hpp>

#include "perf.hpp"

namespace po = boost::program_options;
namespace compute = boost::compute;

template<class T>
double perf_sort(const std::vector<T>& data,
                 const size_t trials,
                 compute::command_queue& queue)
{
    compute::vector<T> vec(data.size(), queue.get_context());

    perf_timer t;
    for(size_t trial = 0; trial < trials; trial++){
        compute::copy(data.begin(), data.end(), vec.begin(), queue);
        t.start();
        compute::sort(vec.begin(), vec.end(), queue);
        queue.finish();
        t.stop();

        if(!compute::is_sorted(vec.begin(), vec.end(), queue)){
            std::cerr << "ERROR: is_sorted() returned false" << std::endl;
        }
    }
    return t.min_time();
}

template<class T>
void tune_sort(const std::vector<T>& data,
               const size_t trials,
               compute::command_queue& queue)
{
    boost::shared_ptr<compute::detail::parameter_cache>
        params = compute::detail::parameter_cache::get_global_cache(queue.get_device());

    const std::string cache_key =
        std::string("__boost_radix_sort_") + compute::type_name<T>();

    const compute::uint_ tpbs[] = { 32, 64, 128, 256, 512, 1024 };

    double min_time = (std::numeric_limits<double>::max)();
    compute::uint_ best_tpb = 0;

    for(size_t i = 0; i < sizeof(tpbs) / sizeof(*tpbs); i++){
        params->set(cache_key, "tpb", tpbs[i]);

        try {
            const double t = perf_sort(data, trials, queue);
            if(t < min_time){
                best_tpb = tpbs[i];
                min_time = t;
            }
        }
        catch(compute::opencl_error&){
            // invalid work group size for this device, skip
        }
    }

    // store optimal parameters
    params->set(cache_key, "tpb", best_tpb);
}

int main(int argc, char *argv[])
{
    // setup command line arguments
    po::options_description options("options");
    options.add_options()
        ("help", "show usage instructions")
        ("size", po::value<size_t>()->default_value(8192), "input size")
        ("trials", po::value<size_t>()->default_value(3), "number of trials to run")
        ("tune", "run tuning procedure")
    ;
    po::positional_options_description positional_options;
    positional_options.add("size", 1);

    // parse command line
    po::variables_map vm;
    po::store(
        po::command_line_parser(argc, argv)
            .options(options).positional(positional_options).run(),
        vm
    );
    po::notify(vm);

    const size_t size = vm["size"].as<size_t>();
    const size_t trials = vm["trials"].as<size_t>();
    std::cout << "size: " << size << std::endl;

    // setup context and queue for the default device
    compute::device device = boost::compute::system::default_device();
    compute::context context(device);
    compute::command_queue queue(context, device);
    std::cout << "device: " << device.name() << std::endl;

    // create vector of random numbers on the host
    std::vector<unsigned int> data(size);
    std::generate(data.begin(), data.end(), rand);

    // run tuning proceure (if requested)
    if(vm.count("tune")){
        tune_sort(data, trials, queue);
    }

    // run sort benchmark
    double t = perf_sort(data, trials, queue);
    std::cout << "time: " << t / 1e6 << " ms" << std::endl;

    return 0;
}