1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <algorithm>
#include <iostream>
#include <vector>
#include <boost/program_options.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/sort.hpp>
#include <boost/compute/algorithm/is_sorted.hpp>
#include <boost/compute/container/vector.hpp>
#include "perf.hpp"
namespace po = boost::program_options;
namespace compute = boost::compute;
template<class T>
double perf_sort(const std::vector<T>& data,
const size_t trials,
compute::command_queue& queue)
{
compute::vector<T> vec(data.size(), queue.get_context());
perf_timer t;
for(size_t trial = 0; trial < trials; trial++){
compute::copy(data.begin(), data.end(), vec.begin(), queue);
t.start();
compute::sort(vec.begin(), vec.end(), queue);
queue.finish();
t.stop();
if(!compute::is_sorted(vec.begin(), vec.end(), queue)){
std::cerr << "ERROR: is_sorted() returned false" << std::endl;
}
}
return t.min_time();
}
template<class T>
void tune_sort(const std::vector<T>& data,
const size_t trials,
compute::command_queue& queue)
{
boost::shared_ptr<compute::detail::parameter_cache>
params = compute::detail::parameter_cache::get_global_cache(queue.get_device());
const std::string cache_key =
std::string("__boost_radix_sort_") + compute::type_name<T>();
const compute::uint_ tpbs[] = { 32, 64, 128, 256, 512, 1024 };
double min_time = (std::numeric_limits<double>::max)();
compute::uint_ best_tpb = 0;
for(size_t i = 0; i < sizeof(tpbs) / sizeof(*tpbs); i++){
params->set(cache_key, "tpb", tpbs[i]);
try {
const double t = perf_sort(data, trials, queue);
if(t < min_time){
best_tpb = tpbs[i];
min_time = t;
}
}
catch(compute::opencl_error&){
// invalid work group size for this device, skip
}
}
// store optimal parameters
params->set(cache_key, "tpb", best_tpb);
}
int main(int argc, char *argv[])
{
// setup command line arguments
po::options_description options("options");
options.add_options()
("help", "show usage instructions")
("size", po::value<size_t>()->default_value(8192), "input size")
("trials", po::value<size_t>()->default_value(3), "number of trials to run")
("tune", "run tuning procedure")
;
po::positional_options_description positional_options;
positional_options.add("size", 1);
// parse command line
po::variables_map vm;
po::store(
po::command_line_parser(argc, argv)
.options(options).positional(positional_options).run(),
vm
);
po::notify(vm);
const size_t size = vm["size"].as<size_t>();
const size_t trials = vm["trials"].as<size_t>();
std::cout << "size: " << size << std::endl;
// setup context and queue for the default device
compute::device device = boost::compute::system::default_device();
compute::context context(device);
compute::command_queue queue(context, device);
std::cout << "device: " << device.name() << std::endl;
// create vector of random numbers on the host
std::vector<unsigned int> data(size);
std::generate(data.begin(), data.end(), rand);
// run tuning proceure (if requested)
if(vm.count("tune")){
tune_sort(data, trials, queue);
}
// run sort benchmark
double t = perf_sort(data, trials, queue);
std::cout << "time: " << t / 1e6 << " ms" << std::endl;
return 0;
}
|