1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
// Copyright W.P. McNeill 2010.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This program uses the A-star search algorithm in the Boost Graph Library to
// solve a maze. It is an example of how to apply Boost Graph Library
// algorithms to implicit graphs.
//
// This program generates a random maze and then tries to find the shortest
// path from the lower left-hand corner to the upper right-hand corner. Mazes
// are represented by two-dimensional grids where a cell in the grid may
// contain a barrier. You may move up, down, right, or left to any adjacent
// cell that does not contain a barrier.
//
// Once a maze solution has been attempted, the maze is printed. If a
// solution was found it will be shown in the maze printout and its length
// will be returned. Note that not all mazes have solutions.
//
// The default maze size is 20x10, though different dimensions may be
// specified on the command line.
#include <boost/graph/astar_search.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/grid_graph.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include <ctime>
#include <iostream>
boost::mt19937 random_generator;
// Distance traveled in the maze
typedef double distance;
#define GRID_RANK 2
typedef boost::grid_graph<GRID_RANK> grid;
typedef boost::graph_traits<grid>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<grid>::vertices_size_type vertices_size_type;
// A hash function for vertices.
struct vertex_hash:std::unary_function<vertex_descriptor, std::size_t> {
std::size_t operator()(vertex_descriptor const& u) const {
std::size_t seed = 0;
boost::hash_combine(seed, u[0]);
boost::hash_combine(seed, u[1]);
return seed;
}
};
typedef boost::unordered_set<vertex_descriptor, vertex_hash> vertex_set;
typedef boost::vertex_subset_complement_filter<grid, vertex_set>::type
filtered_grid;
// A searchable maze
//
// The maze is grid of locations which can either be empty or contain a
// barrier. You can move to an adjacent location in the grid by going up,
// down, left and right. Moving onto a barrier is not allowed. The maze can
// be solved by finding a path from the lower-left-hand corner to the
// upper-right-hand corner. If no open path exists between these two
// locations, the maze is unsolvable.
//
// The maze is implemented as a filtered grid graph where locations are
// vertices. Barrier vertices are filtered out of the graph.
//
// A-star search is used to find a path through the maze. Each edge has a
// weight of one, so the total path length is equal to the number of edges
// traversed.
class maze {
public:
friend std::ostream& operator<<(std::ostream&, const maze&);
friend maze random_maze(std::size_t, std::size_t);
maze():m_grid(create_grid(0, 0)),m_barrier_grid(create_barrier_grid()) {};
maze(std::size_t x, std::size_t y):m_grid(create_grid(x, y)),
m_barrier_grid(create_barrier_grid()) {};
// The length of the maze along the specified dimension.
vertices_size_type length(std::size_t d) const {return m_grid.length(d);}
bool has_barrier(vertex_descriptor u) const {
return m_barriers.find(u) != m_barriers.end();
}
// Try to find a path from the lower-left-hand corner source (0,0) to the
// upper-right-hand corner goal (x-1, y-1).
vertex_descriptor source() const {return vertex(0, m_grid);}
vertex_descriptor goal() const {
return vertex(num_vertices(m_grid)-1, m_grid);
}
bool solve();
bool solved() const {return !m_solution.empty();}
bool solution_contains(vertex_descriptor u) const {
return m_solution.find(u) != m_solution.end();
}
private:
// Create the underlying rank-2 grid with the specified dimensions.
grid create_grid(std::size_t x, std::size_t y) {
boost::array<std::size_t, GRID_RANK> lengths = { {x, y} };
return grid(lengths);
}
// Filter the barrier vertices out of the underlying grid.
filtered_grid create_barrier_grid() {
return boost::make_vertex_subset_complement_filter(m_grid, m_barriers);
}
// The grid underlying the maze
grid m_grid;
// The underlying maze grid with barrier vertices filtered out
filtered_grid m_barrier_grid;
// The barriers in the maze
vertex_set m_barriers;
// The vertices on a solution path through the maze
vertex_set m_solution;
// The length of the solution path
distance m_solution_length;
};
// Euclidean heuristic for a grid
//
// This calculates the Euclidean distance between a vertex and a goal
// vertex.
class euclidean_heuristic:
public boost::astar_heuristic<filtered_grid, double>
{
public:
euclidean_heuristic(vertex_descriptor goal):m_goal(goal) {};
double operator()(vertex_descriptor v) {
return sqrt(pow(double(m_goal[0] - v[0]), 2) + pow(double(m_goal[1] - v[1]), 2));
}
private:
vertex_descriptor m_goal;
};
// Exception thrown when the goal vertex is found
struct found_goal {};
// Visitor that terminates when we find the goal vertex
struct astar_goal_visitor:public boost::default_astar_visitor {
astar_goal_visitor(vertex_descriptor goal):m_goal(goal) {};
void examine_vertex(vertex_descriptor u, const filtered_grid&) {
if (u == m_goal)
throw found_goal();
}
private:
vertex_descriptor m_goal;
};
// Solve the maze using A-star search. Return true if a solution was found.
bool maze::solve() {
boost::static_property_map<distance> weight(1);
// The predecessor map is a vertex-to-vertex mapping.
typedef boost::unordered_map<vertex_descriptor,
vertex_descriptor,
vertex_hash> pred_map;
pred_map predecessor;
boost::associative_property_map<pred_map> pred_pmap(predecessor);
// The distance map is a vertex-to-distance mapping.
typedef boost::unordered_map<vertex_descriptor,
distance,
vertex_hash> dist_map;
dist_map distance;
boost::associative_property_map<dist_map> dist_pmap(distance);
vertex_descriptor s = source();
vertex_descriptor g = goal();
euclidean_heuristic heuristic(g);
astar_goal_visitor visitor(g);
try {
astar_search(m_barrier_grid, s, heuristic,
boost::weight_map(weight).
predecessor_map(pred_pmap).
distance_map(dist_pmap).
visitor(visitor) );
} catch(found_goal fg) {
// Walk backwards from the goal through the predecessor chain adding
// vertices to the solution path.
for (vertex_descriptor u = g; u != s; u = predecessor[u])
m_solution.insert(u);
m_solution.insert(s);
m_solution_length = distance[g];
return true;
}
return false;
}
#define BARRIER "#"
// Print the maze as an ASCII map.
std::ostream& operator<<(std::ostream& output, const maze& m) {
// Header
for (vertices_size_type i = 0; i < m.length(0)+2; i++)
output << BARRIER;
output << std::endl;
// Body
for (int y = m.length(1)-1; y >= 0; y--) {
// Enumerate rows in reverse order and columns in regular order so that
// (0,0) appears in the lower left-hand corner. This requires that y be
// int and not the unsigned vertices_size_type because the loop exit
// condition is y==-1.
for (vertices_size_type x = 0; x < m.length(0); x++) {
// Put a barrier on the left-hand side.
if (x == 0)
output << BARRIER;
// Put the character representing this point in the maze grid.
vertex_descriptor u = {{x, vertices_size_type(y)}};
if (m.solution_contains(u))
output << ".";
else if (m.has_barrier(u))
output << BARRIER;
else
output << " ";
// Put a barrier on the right-hand side.
if (x == m.length(0)-1)
output << BARRIER;
}
// Put a newline after every row except the last one.
output << std::endl;
}
// Footer
for (vertices_size_type i = 0; i < m.length(0)+2; i++)
output << BARRIER;
if (m.solved())
output << std::endl << "Solution length " << m.m_solution_length;
return output;
}
// Return a random integer in the interval [a, b].
std::size_t random_int(std::size_t a, std::size_t b) {
if (b < a)
b = a;
boost::uniform_int<> dist(a, b);
boost::variate_generator<boost::mt19937&, boost::uniform_int<> >
generate(random_generator, dist);
return generate();
}
// Generate a maze with a random assignment of barriers.
maze random_maze(std::size_t x, std::size_t y) {
maze m(x, y);
vertices_size_type n = num_vertices(m.m_grid);
vertex_descriptor s = m.source();
vertex_descriptor g = m.goal();
// One quarter of the cells in the maze should be barriers.
int barriers = n/4;
while (barriers > 0) {
// Choose horizontal or vertical direction.
std::size_t direction = random_int(0, 1);
// Walls range up to one quarter the dimension length in this direction.
vertices_size_type wall = random_int(1, m.length(direction)/4);
// Create the wall while decrementing the total barrier count.
vertex_descriptor u = vertex(random_int(0, n-1), m.m_grid);
while (wall) {
// Start and goal spaces should never be barriers.
if (u != s && u != g) {
wall--;
if (!m.has_barrier(u)) {
m.m_barriers.insert(u);
barriers--;
}
}
vertex_descriptor v = m.m_grid.next(u, direction);
// Stop creating this wall if we reached the maze's edge.
if (u == v)
break;
u = v;
}
}
return m;
}
int main (int argc, char const *argv[]) {
// The default maze size is 20x10. A different size may be specified on
// the command line.
std::size_t x = 20;
std::size_t y = 10;
if (argc == 3) {
x = boost::lexical_cast<std::size_t>(argv[1]);
y = boost::lexical_cast<std::size_t>(argv[2]);
}
random_generator.seed(std::time(0));
maze m = random_maze(x, y);
if (m.solve())
std::cout << "Solved the maze." << std::endl;
else
std::cout << "The maze is not solvable." << std::endl;
std::cout << m << std::endl;
return 0;
}
|