1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
// Boost GCD & LCM common_factor.hpp test program --------------------------//
// (C) Copyright Daryle Walker 2001, 2006.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 01 Dec 2006 Various fixes for old compilers (Joaquin M Lopez Munoz)
// 10 Nov 2006 Make long long and __int64 mutually exclusive (Daryle Walker)
// 04 Nov 2006 Use more built-in numeric types, binary-GCD (Daryle Walker)
// 03 Nov 2006 Use custom numeric types (Daryle Walker)
// 02 Nov 2006 Change to Boost.Test's unit test system (Daryle Walker)
// 07 Nov 2001 Initial version (Daryle Walker)
#define BOOST_TEST_MAIN "Boost.Math GCD & LCM unit tests"
#include <boost/integer/common_factor.hpp>
#include <boost/config.hpp> // for BOOST_MSVC, etc.
#include <boost/detail/workaround.hpp>
#include <boost/operators.hpp>
#include <boost/core/lightweight_test.hpp>
#include <istream> // for std::basic_istream
#include <limits> // for std::numeric_limits
#include <ostream> // for std::basic_ostream
namespace {
// TODO: add polynominal/non-real type; especially after any switch to the
// binary-GCD algorithm for built-in types
// Custom integer class (template)
template < typename IntType, int ID = 0 >
class my_wrapped_integer
: private ::boost::shiftable1<my_wrapped_integer<IntType, ID>,
::boost::operators<my_wrapped_integer<IntType, ID> > >
{
// Helper type-aliases
typedef my_wrapped_integer self_type;
typedef IntType self_type::* bool_type;
// Member data
IntType v_;
public:
// Template parameters
typedef IntType int_type;
BOOST_STATIC_CONSTANT(int,id = ID);
// Lifetime management (use automatic destructor and copy constructor)
my_wrapped_integer( int_type const &v = int_type() ) : v_( v ) {}
// Accessors
int_type value() const { return this->v_; }
// Operators (use automatic copy assignment)
operator bool_type() const { return this->v_ ? &self_type::v_ : 0; }
self_type & operator ++() { ++this->v_; return *this; }
self_type & operator --() { --this->v_; return *this; }
self_type operator ~() const { return self_type( ~this->v_ ); }
self_type operator !() const { return self_type( !this->v_ ); }
self_type operator +() const { return self_type( +this->v_ ); }
self_type operator -() const { return self_type( -this->v_ ); }
bool operator <( self_type const &r ) const { return this->v_ < r.v_; }
bool operator ==( self_type const &r ) const { return this->v_ == r.v_; }
self_type &operator *=(self_type const &r) {this->v_ *= r.v_; return *this;}
self_type &operator /=(self_type const &r) {this->v_ /= r.v_; return *this;}
self_type &operator %=(self_type const &r) {this->v_ %= r.v_; return *this;}
self_type &operator +=(self_type const &r) {this->v_ += r.v_; return *this;}
self_type &operator -=(self_type const &r) {this->v_ -= r.v_; return *this;}
self_type &operator<<=(self_type const &r){this->v_ <<= r.v_; return *this;}
self_type &operator>>=(self_type const &r){this->v_ >>= r.v_; return *this;}
self_type &operator &=(self_type const &r) {this->v_ &= r.v_; return *this;}
self_type &operator |=(self_type const &r) {this->v_ |= r.v_; return *this;}
self_type &operator ^=(self_type const &r) {this->v_ ^= r.v_; return *this;}
// Input & output
friend std::istream & operator >>( std::istream &i, self_type &x )
{ return i >> x.v_; }
friend std::ostream & operator <<( std::ostream &o, self_type const &x )
{ return o << x.v_; }
}; // my_wrapped_integer
template < typename IntType, int ID >
my_wrapped_integer<IntType, ID> abs( my_wrapped_integer<IntType, ID> const &x )
{ return ( x < my_wrapped_integer<IntType, ID>(0) ) ? -x : +x; }
typedef my_wrapped_integer<int> MyInt1;
typedef my_wrapped_integer<unsigned> MyUnsigned1;
typedef my_wrapped_integer<int, 1> MyInt2;
typedef my_wrapped_integer<unsigned, 1> MyUnsigned2;
// Without these explicit instantiations, MSVC++ 6.5/7.0 does not find
// some friend operators in certain contexts.
MyInt1 dummy1;
MyUnsigned1 dummy2;
MyInt2 dummy3;
MyUnsigned2 dummy4;
} // namespace
#define BOOST_NO_MACRO_EXPAND /**/
// Specialize numeric_limits for _some_ of our types
namespace std
{
template < >
class numeric_limits< MyInt1 >
{
typedef MyInt1::int_type int_type;
typedef numeric_limits<int_type> limits_type;
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = limits_type::is_specialized);
static MyInt1 min BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::min)(); }
static MyInt1 max BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::max)(); }
BOOST_STATIC_CONSTANT(int, digits = limits_type::digits);
BOOST_STATIC_CONSTANT(int, digits10 = limits_type::digits10);
#ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
BOOST_STATIC_CONSTANT(int, max_digits10 = limits_type::max_digits10);
#endif
BOOST_STATIC_CONSTANT(bool, is_signed = limits_type::is_signed);
BOOST_STATIC_CONSTANT(bool, is_integer = limits_type::is_integer);
BOOST_STATIC_CONSTANT(bool, is_exact = limits_type::is_exact);
BOOST_STATIC_CONSTANT(int, radix = limits_type::radix);
static MyInt1 epsilon() throw() { return limits_type::epsilon(); }
static MyInt1 round_error() throw() { return limits_type::round_error(); }
BOOST_STATIC_CONSTANT(int, min_exponent = limits_type::min_exponent);
BOOST_STATIC_CONSTANT(int, min_exponent10 = limits_type::min_exponent10);
BOOST_STATIC_CONSTANT(int, max_exponent = limits_type::max_exponent);
BOOST_STATIC_CONSTANT(int, max_exponent10 = limits_type::max_exponent10);
BOOST_STATIC_CONSTANT(bool, has_infinity = limits_type::has_infinity);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = limits_type::has_quiet_NaN);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = limits_type::has_signaling_NaN);
BOOST_STATIC_CONSTANT(float_denorm_style, has_denorm = limits_type::has_denorm);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = limits_type::has_denorm_loss);
static MyInt1 infinity() throw() { return limits_type::infinity(); }
static MyInt1 quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyInt1 signaling_NaN() throw() {return limits_type::signaling_NaN();}
static MyInt1 denorm_min() throw() { return limits_type::denorm_min(); }
BOOST_STATIC_CONSTANT(bool, is_iec559 = limits_type::is_iec559);
BOOST_STATIC_CONSTANT(bool, is_bounded = limits_type::is_bounded);
BOOST_STATIC_CONSTANT(bool, is_modulo = limits_type::is_modulo);
BOOST_STATIC_CONSTANT(bool, traps = limits_type::traps);
BOOST_STATIC_CONSTANT(bool, tinyness_before = limits_type::tinyness_before);
BOOST_STATIC_CONSTANT(float_round_style, round_style = limits_type::round_style);
}; // std::numeric_limits<MyInt1>
template < >
class numeric_limits< MyUnsigned1 >
{
typedef MyUnsigned1::int_type int_type;
typedef numeric_limits<int_type> limits_type;
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = limits_type::is_specialized);
static MyUnsigned1 min BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::min)(); }
static MyUnsigned1 max BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::max)(); }
BOOST_STATIC_CONSTANT(int, digits = limits_type::digits);
BOOST_STATIC_CONSTANT(int, digits10 = limits_type::digits10);
#ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
BOOST_STATIC_CONSTANT(int, max_digits10 = limits_type::max_digits10);
#endif
BOOST_STATIC_CONSTANT(bool, is_signed = limits_type::is_signed);
BOOST_STATIC_CONSTANT(bool, is_integer = limits_type::is_integer);
BOOST_STATIC_CONSTANT(bool, is_exact = limits_type::is_exact);
BOOST_STATIC_CONSTANT(int, radix = limits_type::radix);
static MyUnsigned1 epsilon() throw() { return limits_type::epsilon(); }
static MyUnsigned1 round_error() throw(){return limits_type::round_error();}
BOOST_STATIC_CONSTANT(int, min_exponent = limits_type::min_exponent);
BOOST_STATIC_CONSTANT(int, min_exponent10 = limits_type::min_exponent10);
BOOST_STATIC_CONSTANT(int, max_exponent = limits_type::max_exponent);
BOOST_STATIC_CONSTANT(int, max_exponent10 = limits_type::max_exponent10);
BOOST_STATIC_CONSTANT(bool, has_infinity = limits_type::has_infinity);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = limits_type::has_quiet_NaN);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = limits_type::has_signaling_NaN);
BOOST_STATIC_CONSTANT(float_denorm_style, has_denorm = limits_type::has_denorm);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = limits_type::has_denorm_loss);
static MyUnsigned1 infinity() throw() { return limits_type::infinity(); }
static MyUnsigned1 quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyUnsigned1 signaling_NaN() throw()
{ return limits_type::signaling_NaN(); }
static MyUnsigned1 denorm_min() throw(){ return limits_type::denorm_min(); }
BOOST_STATIC_CONSTANT(bool, is_iec559 = limits_type::is_iec559);
BOOST_STATIC_CONSTANT(bool, is_bounded = limits_type::is_bounded);
BOOST_STATIC_CONSTANT(bool, is_modulo = limits_type::is_modulo);
BOOST_STATIC_CONSTANT(bool, traps = limits_type::traps);
BOOST_STATIC_CONSTANT(bool, tinyness_before = limits_type::tinyness_before);
BOOST_STATIC_CONSTANT(float_round_style, round_style = limits_type::round_style);
}; // std::numeric_limits<MyUnsigned1>
#if BOOST_WORKAROUND(BOOST_MSVC,<1300)
// MSVC 6.0 lacks operator<< for __int64, see
// http://support.microsoft.com/default.aspx?scid=kb;en-us;168440
inline ostream& operator<<(ostream& os, __int64 i)
{
char buf[20];
sprintf(buf,"%I64d", i);
os << buf;
return os;
}
inline ostream& operator<<(ostream& os, unsigned __int64 i)
{
char buf[20];
sprintf(buf,"%I64u", i);
os << buf;
return os;
}
#endif
} // namespace std
// GCD tests
// GCD on signed integer types
template< class T > void gcd_int_test() // signed_test_types
{
using boost::integer::gcd;
// Originally from Boost.Rational tests
BOOST_TEST_EQ( gcd<T>( 1, -1), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( -1, 1), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 1, 1), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( -1, -1), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 0, 0), static_cast<T>( 0) );
BOOST_TEST_EQ( gcd<T>( 7, 0), static_cast<T>( 7) );
BOOST_TEST_EQ( gcd<T>( 0, 9), static_cast<T>( 9) );
BOOST_TEST_EQ( gcd<T>( -7, 0), static_cast<T>( 7) );
BOOST_TEST_EQ( gcd<T>( 0, -9), static_cast<T>( 9) );
BOOST_TEST_EQ( gcd<T>( 42, 30), static_cast<T>( 6) );
BOOST_TEST_EQ( gcd<T>( 6, -9), static_cast<T>( 3) );
BOOST_TEST_EQ( gcd<T>(-10, -10), static_cast<T>(10) );
BOOST_TEST_EQ( gcd<T>(-25, -10), static_cast<T>( 5) );
BOOST_TEST_EQ( gcd<T>( 3, 7), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 8, 9), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 7, 49), static_cast<T>( 7) );
}
// GCD on unmarked signed integer type
void gcd_unmarked_int_test()
{
using boost::integer::gcd;
// The regular signed-integer GCD function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
// marked as such (due to no std::numeric_limits specialization) may be off
// by a sign.
BOOST_TEST_EQ( abs(gcd<MyInt2>( 1, -1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( -1, 1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 1, 1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( -1, -1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 0, 0 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 7, 0 )), MyInt2( 7) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 0, 9 )), MyInt2( 9) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( -7, 0 )), MyInt2( 7) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 0, -9 )), MyInt2( 9) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 42, 30 )), MyInt2( 6) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 6, -9 )), MyInt2( 3) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( -10, -10 )), MyInt2(10) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( -25, -10 )), MyInt2( 5) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 3, 7 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 8, 9 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(gcd<MyInt2>( 7, 49 )), MyInt2( 7) );
}
// GCD on unsigned integer types
template< class T > void gcd_unsigned_test() // unsigned_test_types
{
using boost::integer::gcd;
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
BOOST_TEST_EQ( gcd<T>( 1u, 1u), static_cast<T>( 1u) );
BOOST_TEST_EQ( gcd<T>( 0u, 0u), static_cast<T>( 0u) );
BOOST_TEST_EQ( gcd<T>( 7u, 0u), static_cast<T>( 7u) );
BOOST_TEST_EQ( gcd<T>( 0u, 9u), static_cast<T>( 9u) );
BOOST_TEST_EQ( gcd<T>(42u, 30u), static_cast<T>( 6u) );
BOOST_TEST_EQ( gcd<T>( 3u, 7u), static_cast<T>( 1u) );
BOOST_TEST_EQ( gcd<T>( 8u, 9u), static_cast<T>( 1u) );
BOOST_TEST_EQ( gcd<T>( 7u, 49u), static_cast<T>( 7u) );
}
// GCD at compile-time
void gcd_static_test()
{
using boost::integer::static_gcd;
BOOST_TEST_EQ( (static_gcd< 1, 1>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 0, 0>::value), 0 );
BOOST_TEST_EQ( (static_gcd< 7, 0>::value), 7 );
BOOST_TEST_EQ( (static_gcd< 0, 9>::value), 9 );
BOOST_TEST_EQ( (static_gcd<42, 30>::value), 6 );
BOOST_TEST_EQ( (static_gcd< 3, 7>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 8, 9>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 7, 49>::value), 7 );
}
// TODO: non-built-in signed and unsigned integer tests, with and without
// numeric_limits specialization; polynominal tests; note any changes if
// built-ins switch to binary-GCD algorithm
// LCM tests
// LCM on signed integer types
template< class T > void lcm_int_test() // signed_test_types
{
using boost::integer::lcm;
// Originally from Boost.Rational tests
BOOST_TEST_EQ( lcm<T>( 1, -1), static_cast<T>( 1) );
BOOST_TEST_EQ( lcm<T>( -1, 1), static_cast<T>( 1) );
BOOST_TEST_EQ( lcm<T>( 1, 1), static_cast<T>( 1) );
BOOST_TEST_EQ( lcm<T>( -1, -1), static_cast<T>( 1) );
BOOST_TEST_EQ( lcm<T>( 0, 0), static_cast<T>( 0) );
BOOST_TEST_EQ( lcm<T>( 6, 0), static_cast<T>( 0) );
BOOST_TEST_EQ( lcm<T>( 0, 7), static_cast<T>( 0) );
BOOST_TEST_EQ( lcm<T>( -5, 0), static_cast<T>( 0) );
BOOST_TEST_EQ( lcm<T>( 0, -4), static_cast<T>( 0) );
BOOST_TEST_EQ( lcm<T>( 18, 30), static_cast<T>(90) );
BOOST_TEST_EQ( lcm<T>( -6, 9), static_cast<T>(18) );
BOOST_TEST_EQ( lcm<T>(-10, -10), static_cast<T>(10) );
BOOST_TEST_EQ( lcm<T>( 25, -10), static_cast<T>(50) );
BOOST_TEST_EQ( lcm<T>( 3, 7), static_cast<T>(21) );
BOOST_TEST_EQ( lcm<T>( 8, 9), static_cast<T>(72) );
BOOST_TEST_EQ( lcm<T>( 7, 49), static_cast<T>(49) );
}
// LCM on unmarked signed integer type
void lcm_unmarked_int_test()
{
using boost::integer::lcm;
// The regular signed-integer LCM function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
// marked as such (due to no std::numeric_limits specialization) may be off
// by a sign.
BOOST_TEST_EQ( abs(lcm<MyInt2>( 1, -1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( -1, 1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 1, 1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( -1, -1 )), MyInt2( 1) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 0, 0 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 6, 0 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 0, 7 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( -5, 0 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 0, -4 )), MyInt2( 0) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 18, 30 )), MyInt2(90) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( -6, 9 )), MyInt2(18) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( -10, -10 )), MyInt2(10) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 25, -10 )), MyInt2(50) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 3, 7 )), MyInt2(21) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 8, 9 )), MyInt2(72) );
BOOST_TEST_EQ( abs(lcm<MyInt2>( 7, 49 )), MyInt2(49) );
}
// LCM on unsigned integer types
template< class T > void lcm_unsigned_test() // unsigned_test_types
{
using boost::integer::lcm;
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
BOOST_TEST_EQ( lcm<T>( 1u, 1u), static_cast<T>( 1u) );
BOOST_TEST_EQ( lcm<T>( 0u, 0u), static_cast<T>( 0u) );
BOOST_TEST_EQ( lcm<T>( 6u, 0u), static_cast<T>( 0u) );
BOOST_TEST_EQ( lcm<T>( 0u, 7u), static_cast<T>( 0u) );
BOOST_TEST_EQ( lcm<T>(18u, 30u), static_cast<T>(90u) );
BOOST_TEST_EQ( lcm<T>( 3u, 7u), static_cast<T>(21u) );
BOOST_TEST_EQ( lcm<T>( 8u, 9u), static_cast<T>(72u) );
BOOST_TEST_EQ( lcm<T>( 7u, 49u), static_cast<T>(49u) );
}
// LCM at compile-time
void lcm_static_test()
{
using boost::integer::static_lcm;
BOOST_TEST_EQ( (static_lcm< 1, 1>::value), 1 );
BOOST_TEST_EQ( (static_lcm< 0, 0>::value), 0 );
BOOST_TEST_EQ( (static_lcm< 6, 0>::value), 0 );
BOOST_TEST_EQ( (static_lcm< 0, 7>::value), 0 );
BOOST_TEST_EQ( (static_lcm<18, 30>::value), 90 );
BOOST_TEST_EQ( (static_lcm< 3, 7>::value), 21 );
BOOST_TEST_EQ( (static_lcm< 8, 9>::value), 72 );
BOOST_TEST_EQ( (static_lcm< 7, 49>::value), 49 );
}
// TODO: see GCD to-do
// main
// Various types to test with each GCD/LCM
#define TEST_SIGNED_( test ) \
test<signed char>(); \
test<short>(); \
test<int>(); \
test<long>(); \
test<MyInt1>();
#ifdef BOOST_HAS_LONG_LONG
# define TEST_SIGNED( test ) \
TEST_SIGNED_( test ) \
test<boost::long_long_type>();
#elif defined(BOOST_HAS_MS_INT64)
# define TEST_SIGNED( test ) \
TEST_SIGNED_( test ) \
test<__int64>();
#endif
#define TEST_UNSIGNED_( test ) \
test<unsigned char>(); \
test<unsigned short>(); \
test<unsigned>(); \
test<unsigned long>(); \
test<MyUnsigned1>(); \
test<MyUnsigned2>();
#ifdef BOOST_HAS_LONG_LONG
# define TEST_UNSIGNED( test ) \
TEST_UNSIGNED_( test ) \
test<boost::ulong_long_type>();
#elif defined(BOOST_HAS_MS_INT64)
# define TEST_UNSIGNED( test ) \
TEST_UNSIGNED_( test ) \
test<unsigned __int64>();
#endif
int main()
{
TEST_SIGNED( gcd_int_test )
gcd_unmarked_int_test();
TEST_UNSIGNED( gcd_unsigned_test )
gcd_static_test();
TEST_SIGNED( lcm_int_test )
lcm_unmarked_int_test();
TEST_UNSIGNED( lcm_unsigned_test )
lcm_static_test();
return boost::report_errors();
}
|