1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
// Copyright Paul A. Bristow 2013
// Copyright John Maddock 2013
// Copyright Christopher Kormanyos
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Examples of numeric_limits usage as snippets for multiprecision documentation.
// Includes text as Quickbook comments.
#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>
#include <limits> // numeric_limits
#include <iomanip>
#include <locale>
#include <boost/assert.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/nonfinite_num_facets.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp> // is decimal.
#include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
static long double const log10Two = 0.30102999566398119521373889472449L; // log10(2.)
template <typename T>
int max_digits10()
{
int significand_digits = std::numeric_limits<T>::digits;
// BOOST_CONSTEXPR_OR_CONST int significand_digits = std::numeric_limits<T>::digits;
return static_cast<int>(ceil(1 + significand_digits * log10Two));
} // template <typename T> int max_digits10()
// Used to test max_digits10<>() function below.
//#define BOOST_NO_CXX11_NUMERIC_LIMITS
BOOST_AUTO_TEST_CASE(test_numeric_limits_snips)
{
try
{
// Example of portable way to get `std::numeric_limits<T>::max_digits10`.
//[max_digits10_1
/*`For example, to be portable (including obselete platforms) for type `T` where `T` may be:
`float`, `double`, `long double`, `128-bit quad type`, `cpp_bin_float_50` ...
*/
typedef float T;
#if defined BOOST_NO_CXX11_NUMERIC_LIMITS
// No max_digits10 implemented.
std::cout.precision(max_digits10<T>());
#else
#if(_MSC_VER <= 1600)
// Wrong value for std::numeric_limits<float>::max_digits10.
std::cout.precision(max_digits10<T>());
#else // Use the C++11 max_digits10.
std::cout.precision(std::numeric_limits<T>::max_digits10);
#endif
#endif
std::cout << "std::cout.precision(max_digits10) = " << std::cout.precision() << std::endl; // 9
double x = 1.2345678901234567889;
std::cout << "x = " << x << std::endl; //
/*`which should output:
std::cout.precision(max_digits10) = 9
x = 1.23456789
*/
//] [/max_digits10_1]
{
//[max_digits10_2
double write = 2./3; // Any arbitrary value that cannot be represented exactly.
double read = 0;
std::stringstream s;
s.precision(std::numeric_limits<double>::digits10); // or `float64_t` for 64-bit IEE754 double.
s << write;
s >> read;
if(read != write)
{
std::cout << std::setprecision(std::numeric_limits<double>::digits10)
<< read << " != " << write << std::endl;
}
//] [/max_digits10_2]
// 0.666666666666667 != 0.666666666666667
}
{
//[max_digits10_3
double pi = boost::math::double_constants::pi;
std::cout.precision(std::numeric_limits<double>::max_digits10);
std::cout << pi << std::endl; // 3.1415926535897931
//] [/max_digits10_3]
}
{
//[max_digits10_4
/*`and similarly for a much higher precision type:
*/
using namespace boost::multiprecision;
typedef number<cpp_dec_float<50> > cpp_dec_float_50; // 50 decimal digits.
using boost::multiprecision::cpp_dec_float_50;
cpp_dec_float_50 pi = boost::math::constants::pi<cpp_dec_float_50>();
std::cout.precision(std::numeric_limits<cpp_dec_float_50>::max_digits10);
std::cout << pi << std::endl;
// 3.141592653589793238462643383279502884197169399375105820974944592307816406
//] [/max_digits10_4]
}
{
//[max_digits10_5
for (int i = 2; i < 15; i++)
{
std::cout << std::setw(std::numeric_limits<int>::max_digits10)
<< boost::math::factorial<double>(i) << std::endl;
}
//] [/max_digits10_5]
}
}
catch(std::exception ex)
{
std::cout << "Caught Exception " << ex.what() << std::endl;
}
{
//[max_digits10_6
typedef double T;
bool denorm = std::numeric_limits<T>::denorm_min() < std::numeric_limits<T>::min();
BOOST_ASSERT(denorm);
//] [/max_digits10_6]
}
{
unsigned char c = 255;
std::cout << "char c = " << (int)c << std::endl;
}
{
//[digits10_1
std::cout
<< std::setw(std::numeric_limits<short>::digits10 +1 +1) // digits10+1, and +1 for sign.
<< std::showpos << (std::numeric_limits<short>::max)() // +32767
<< std::endl
<< std::setw(std::numeric_limits<short>::digits10 +1 +1)
<< (std::numeric_limits<short>::min)() << std::endl; // -32767
//] [/digits10_1]
}
{
//[digits10_2
std::cout
<< std::setw(std::numeric_limits<unsigned short>::digits10 +1 +1) // digits10+1, and +1 for sign.
<< std::showpos << (std::numeric_limits<unsigned short>::max)() // 65535
<< std::endl
<< std::setw(std::numeric_limits<unsigned short>::digits10 +1 +1) // digits10+1, and +1 for sign.
<< (std::numeric_limits<unsigned short>::min)() << std::endl; // 0
//] [/digits10_2]
}
std::cout <<std::noshowpos << std::endl;
{
//[digits10_3
std::cout.precision(std::numeric_limits<double>::max_digits10);
double d = 1e15;
double dp1 = d+1;
std::cout << d << "\n" << dp1 << std::endl;
// 1000000000000000
// 1000000000000001
std::cout << dp1 - d << std::endl; // 1
//] [/digits10_3]
}
{
//[digits10_4
std::cout.precision(std::numeric_limits<double>::max_digits10);
double d = 1e16;
double dp1 = d+1;
std::cout << d << "\n" << dp1 << std::endl;
// 10000000000000000
// 10000000000000000
std::cout << dp1 - d << std::endl; // 0 !!!
//] [/digits10_4]
}
{
//[epsilon_1
std::cout.precision(std::numeric_limits<double>::max_digits10);
double d = 1.;
double eps = std::numeric_limits<double>::epsilon();
double dpeps = d+eps;
std::cout << std::showpoint // Ensure all trailing zeros are shown.
<< d << "\n" // 1.0000000000000000
<< dpeps << std::endl; // 2.2204460492503131e-016
std::cout << dpeps - d // 1.0000000000000002
<< std::endl;
//] [epsilon_1]
}
{
//[epsilon_2
double one = 1.;
double nad = boost::math::float_next(one);
std::cout << nad << "\n" // 1.0000000000000002
<< nad - one // 2.2204460492503131e-016
<< std::endl;
//] [epsilon_2]
}
{
//[epsilon_3
std::cout.precision(std::numeric_limits<double>::max_digits10);
double d = 1.;
double eps = std::numeric_limits<double>::epsilon();
double dpeps = d + eps/2;
std::cout << std::showpoint // Ensure all trailing zeros are shown.
<< dpeps << "\n" // 1.0000000000000000
<< eps/2 << std::endl; // 1.1102230246251565e-016
std::cout << dpeps - d // 0.00000000000000000
<< std::endl;
//] [epsilon_3]
}
{
typedef double RealType;
//[epsilon_4
/*`A tolerance might be defined using this version of epsilon thus:
*/
RealType tolerance = boost::math::tools::epsilon<RealType>() * 2;
//] [epsilon_4]
}
{
//[digits10_5
-(std::numeric_limits<double>::max)() == std::numeric_limits<double>::lowest();
//] [/digits10_5]
}
{
//[denorm_min_1
std::cout.precision(std::numeric_limits<double>::max_digits10);
if (std::numeric_limits<double>::has_denorm == std::denorm_present)
{
double d = std::numeric_limits<double>::denorm_min();
std::cout << d << std::endl; // 4.9406564584124654e-324
int exponent;
double significand = frexp(d, &exponent);
std::cout << "exponent = " << std::hex << exponent << std::endl; // fffffbcf
std::cout << "significand = " << std::hex << significand << std::endl; // 0.50000000000000000
}
else
{
std::cout << "No denormalization. " << std::endl;
}
//] [denorm_min_1]
}
{
//[round_error_1
double round_err = std::numeric_limits<double>::epsilon() // 2.2204460492503131e-016
* std::numeric_limits<double>::round_error(); // 1/2
std::cout << round_err << std::endl; // 1.1102230246251565e-016
//] [/round_error_1]
}
{
typedef double T;
//[tolerance_1
/*`For example, if we want a tolerance that might suit about 9 arithmetical operations,
say sqrt(9) = 3, we could define:
*/
T tolerance = 3 * std::numeric_limits<T>::epsilon();
/*`This is very widely used in Boost.Math testing
with Boost.Test's macro `BOOST_CHECK_CLOSE_FRACTION`
*/
T expected = 1.0;
T calculated = 1.0 + std::numeric_limits<T>::epsilon();
BOOST_CHECK_CLOSE_FRACTION(expected, calculated, tolerance);
//] [/tolerance_1]
}
{
//[tolerance_2
using boost::multiprecision::number;
using boost::multiprecision::cpp_dec_float;
using boost::multiprecision::et_off;
typedef number<cpp_dec_float<50>, et_off > cpp_dec_float_50; // 50 decimal digits.
/*`[note that Boost.Test does not yet allow floating-point comparisons with expression templates on,
so the default expression template parameter has been replaced by `et_off`.]
*/
cpp_dec_float_50 tolerance = 3 * std::numeric_limits<cpp_dec_float_50>::epsilon();
cpp_dec_float_50 expected = boost::math::constants::two_pi<cpp_dec_float_50>();
cpp_dec_float_50 calculated = 2 * boost::math::constants::pi<cpp_dec_float_50>();
BOOST_CHECK_CLOSE_FRACTION(expected, calculated, tolerance);
//] [/tolerance_2]
}
{
//[tolerance_3
using boost::multiprecision::cpp_bin_float_quad;
cpp_bin_float_quad tolerance = 3 * std::numeric_limits<cpp_bin_float_quad>::epsilon();
cpp_bin_float_quad expected = boost::math::constants::two_pi<cpp_bin_float_quad>();
cpp_bin_float_quad calculated = 2 * boost::math::constants::pi<cpp_bin_float_quad>();
BOOST_CHECK_CLOSE_FRACTION(expected, calculated, tolerance);
//] [/tolerance_3]
}
{
//[nan_1]
/*`NaN can be used with binary multiprecision types like `cpp_bin_float_quad`:
*/
using boost::multiprecision::cpp_bin_float_quad;
if (std::numeric_limits<cpp_bin_float_quad>::has_quiet_NaN == true)
{
cpp_bin_float_quad tolerance = 3 * std::numeric_limits<cpp_bin_float_quad>::epsilon();
cpp_bin_float_quad NaN = std::numeric_limits<cpp_bin_float_quad>::quiet_NaN();
std::cout << "cpp_bin_float_quad NaN is " << NaN << std::endl; // cpp_bin_float_quad NaN is nan
cpp_bin_float_quad expected = NaN;
cpp_bin_float_quad calculated = 2 * NaN;
// Comparisons of NaN's always fail:
bool b = expected == calculated;
std::cout << b << std::endl;
BOOST_CHECK_NE(expected, expected);
BOOST_CHECK_NE(expected, calculated);
}
else
{
std::cout << "Type " << typeid(cpp_bin_float_quad).name() << " does not have NaNs!" << std::endl;
}
//] [/nan_1]
}
{
//[facet_1]
/*`
See [@boost:/libs/math/example/nonfinite_facet_sstream.cpp]
and we also need
#include <boost/math/special_functions/nonfinite_num_facets.hpp>
Then we can equally well use a multiprecision type cpp_bin_float_quad:
*/
using boost::multiprecision::cpp_bin_float_quad;
typedef cpp_bin_float_quad T;
using boost::math::nonfinite_num_put;
using boost::math::nonfinite_num_get;
{
std::locale old_locale;
std::locale tmp_locale(old_locale, new nonfinite_num_put<char>);
std::locale new_locale(tmp_locale, new nonfinite_num_get<char>);
std::stringstream ss;
ss.imbue(new_locale);
T inf = std::numeric_limits<T>::infinity();
ss << inf; // Write out.
assert(ss.str() == "inf");
T r;
ss >> r; // Read back in.
assert(inf == r); // Confirms that the floating-point values really are identical.
std::cout << "infinity output was " << ss.str() << std::endl;
std::cout << "infinity input was " << r << std::endl;
}
/*`
infinity output was inf
infinity input was inf
Similarly we can do the same with NaN (except that we cannot use `assert`)
*/
{
std::locale old_locale;
std::locale tmp_locale(old_locale, new nonfinite_num_put<char>);
std::locale new_locale(tmp_locale, new nonfinite_num_get<char>);
std::stringstream ss;
ss.imbue(new_locale);
T n;
T NaN = std::numeric_limits<T>::quiet_NaN();
ss << NaN; // Write out.
assert(ss.str() == "nan");
std::cout << "NaN output was " << ss.str() << std::endl;
ss >> n; // Read back in.
std::cout << "NaN input was " << n << std::endl;
}
/*`
NaN output was nan
NaN input was nan
*/
//] [/facet_1]
}
} // BOOST_AUTO_TEST_CASE(test_numeric_limits_snips)
|