1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
///////////////////////////////////////////////////////////////////////////////
// Copyright 2012 John Maddock.
// Copyright 2012 Phil Endecott
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/multiprecision/cpp_int.hpp>
#include "arithmetic_backend.hpp"
#include <boost/chrono.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <fstream>
#include <iomanip>
template <class Clock>
struct stopwatch
{
typedef typename Clock::duration duration;
stopwatch()
{
m_start = Clock::now();
}
duration elapsed()
{
return Clock::now() - m_start;
}
void reset()
{
m_start = Clock::now();
}
private:
typename Clock::time_point m_start;
};
// Custom 128-bit maths used for exact calculation of the Delaunay test.
// Only the few operators actually needed here are implemented.
struct int128_t {
int64_t high;
uint64_t low;
int128_t() {}
int128_t(int32_t i): high(i>>31), low(static_cast<int64_t>(i)) {}
int128_t(uint32_t i): high(0), low(i) {}
int128_t(int64_t i): high(i>>63), low(i) {}
int128_t(uint64_t i): high(0), low(i) {}
};
inline int128_t operator<<(int128_t val, int amt)
{
int128_t r;
r.low = val.low << amt;
r.high = val.low >> (64-amt);
r.high |= val.high << amt;
return r;
}
inline int128_t& operator+=(int128_t& l, int128_t r)
{
l.low += r.low;
bool carry = l.low < r.low;
l.high += r.high;
if (carry) ++l.high;
return l;
}
inline int128_t operator-(int128_t val)
{
val.low = ~val.low;
val.high = ~val.high;
val.low += 1;
if (val.low == 0) val.high += 1;
return val;
}
inline int128_t operator+(int128_t l, int128_t r)
{
l += r;
return l;
}
inline bool operator<(int128_t l, int128_t r)
{
if (l.high != r.high) return l.high < r.high;
return l.low < r.low;
}
inline int128_t mult_64x64_to_128(int64_t a, int64_t b)
{
// Make life simple by dealing only with positive numbers:
bool neg = false;
if (a<0) { neg = !neg; a = -a; }
if (b<0) { neg = !neg; b = -b; }
// Divide input into 32-bit halves:
uint32_t ah = a >> 32;
uint32_t al = a & 0xffffffff;
uint32_t bh = b >> 32;
uint32_t bl = b & 0xffffffff;
// Long multiplication, with 64-bit temporaries:
// ah al
// * bh bl
// ----------------
// al*bl (t1)
// + ah*bl (t2)
// + al*bh (t3)
// + ah*bh (t4)
// ----------------
uint64_t t1 = static_cast<uint64_t>(al)*bl;
uint64_t t2 = static_cast<uint64_t>(ah)*bl;
uint64_t t3 = static_cast<uint64_t>(al)*bh;
uint64_t t4 = static_cast<uint64_t>(ah)*bh;
int128_t r(t1);
r.high = t4;
r += int128_t(t2) << 32;
r += int128_t(t3) << 32;
if (neg) r = -r;
return r;
}
template <class R, class T>
BOOST_FORCEINLINE void mul_2n(R& r, const T& a, const T& b)
{
r = a;
r *= b;
}
template <class B, boost::multiprecision::expression_template_option ET, class T>
BOOST_FORCEINLINE void mul_2n(boost::multiprecision::number<B, ET>& r, const T& a, const T& b)
{
multiply(r, a, b);
}
BOOST_FORCEINLINE void mul_2n(int128_t& r, const boost::int64_t& a, const boost::int64_t& b)
{
r = mult_64x64_to_128(a, b);
}
template <class Traits>
inline bool delaunay_test(int32_t ax, int32_t ay, int32_t bx, int32_t by,
int32_t cx, int32_t cy, int32_t dx, int32_t dy)
{
// Test whether the quadrilateral ABCD's diagonal AC should be flipped to BD.
// This is the Cline & Renka method.
// Flip if the sum of the angles ABC and CDA is greater than 180 degrees.
// Equivalently, flip if sin(ABC + CDA) < 0.
// Trig identity: cos(ABC) * sin(CDA) + sin(ABC) * cos(CDA) < 0
// We can use scalar and vector products to find sin and cos, and simplify
// to the following code.
// Numerical robustness is important. This code addresses it by performing
// exact calculations with large integer types.
//
// NOTE: This routine is limited to inputs with up to 30 BIT PRECISION, which
// is to say all inputs must be in the range [INT_MIN/2, INT_MAX/2].
typedef typename Traits::i64_t i64;
typedef typename Traits::i128_t i128;
i64 cos_abc, t;
mul_2n(cos_abc, (ax-bx), (cx-bx)); // subtraction yields 31-bit values, multiplied to give 62-bit values
mul_2n(t, (ay-by), (cy-by));
cos_abc += t; // addition yields 63 bit value, leaving one left for the sign
i64 cos_cda;
mul_2n(cos_cda, (cx-dx), (ax-dx));
mul_2n(t, (cy-dy), (ay-dy));
cos_cda += t;
if (cos_abc >= 0 && cos_cda >= 0) return false;
if (cos_abc < 0 && cos_cda < 0) return true;
i64 sin_abc;
mul_2n(sin_abc, (ax-bx), (cy-by));
mul_2n(t, (cx-bx), (ay-by));
sin_abc -= t;
i64 sin_cda;
mul_2n(sin_cda, (cx-dx), (ay-dy));
mul_2n(t, (ax-dx), (cy-dy));
sin_cda -= t;
i128 sin_sum, t128;
mul_2n(sin_sum, sin_abc, cos_cda); // 63-bit inputs multiplied to 126-bit output
mul_2n(t128, cos_abc, sin_cda);
sin_sum += t128; // Addition yields 127 bit result, leaving one bit for the sign
return sin_sum < 0;
}
struct dt_dat {
int32_t ax, ay, bx, by, cx, cy, dx, dy;
};
typedef std::vector<dt_dat> data_t;
data_t data;
template <class Traits>
void do_calc(const char* name)
{
std::cout << "Running calculations for: " << name << std::endl;
stopwatch<boost::chrono::high_resolution_clock> w;
boost::uint64_t flips = 0;
boost::uint64_t calcs = 0;
for(int j = 0; j < 1000; ++j)
{
for(data_t::const_iterator i = data.begin(); i != data.end(); ++i)
{
const dt_dat& d = *i;
bool flip = delaunay_test<Traits>(d.ax,d.ay, d.bx,d.by, d.cx,d.cy, d.dx,d.dy);
if (flip) ++flips;
++calcs;
}
}
double t = boost::chrono::duration_cast<boost::chrono::duration<double> >(w.elapsed()).count();
std::cout << "Number of calculations = " << calcs << std::endl;
std::cout << "Number of flips = " << flips << std::endl;
std::cout << "Total execution time = " << t << std::endl;
std::cout << "Time per calculation = " << t / calcs << std::endl << std::endl;
}
template <class I64, class I128>
struct test_traits
{
typedef I64 i64_t;
typedef I128 i128_t;
};
dt_dat generate_quadrilateral()
{
static boost::random::mt19937 gen;
static boost::random::uniform_int_distribution<> dist(INT_MIN/2, INT_MAX/2);
dt_dat result;
result.ax = dist(gen);
result.ay = dist(gen);
result.bx = boost::random::uniform_int_distribution<>(result.ax, INT_MAX/2)(gen); // bx is to the right of ax.
result.by = dist(gen);
result.cx = dist(gen);
result.cy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX/2)(gen); // cy is below at least one of ay and by.
result.dx = boost::random::uniform_int_distribution<>(result.cx, INT_MAX/2)(gen); // dx is to the right of cx.
result.dy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX/2)(gen); // cy is below at least one of ay and by.
return result;
}
static void load_data()
{
for(unsigned i = 0; i < 100000; ++i)
data.push_back(generate_quadrilateral());
}
int main()
{
using namespace boost::multiprecision;
std::cout << "loading data...\n";
load_data();
std::cout << "calculating...\n";
do_calc<test_traits<boost::int64_t, boost::int64_t> >("int64_t, int64_t");
do_calc<test_traits<number<arithmetic_backend<boost::int64_t>, et_off>, number<arithmetic_backend<boost::int64_t>, et_off> > >("arithmetic_backend<int64_t>, arithmetic_backend<int64_t>");
do_calc<test_traits<boost::int64_t, number<arithmetic_backend<boost::int64_t>, et_off> > >("int64_t, arithmetic_backend<int64_t>");
do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off> > >("multiprecision::int64_t, multiprecision::int64_t");
do_calc<test_traits<boost::int64_t, ::int128_t> >("int64_t, int128_t");
do_calc<test_traits<boost::int64_t, boost::multiprecision::int128_t> >("int64_t, boost::multiprecision::int128_t");
do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128, 128, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_on> > >("int64_t, int128_t (ET)");
do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, boost::multiprecision::int128_t > >("multiprecision::int64_t, multiprecision::int128_t");
do_calc<test_traits<boost::int64_t, cpp_int> >("int64_t, cpp_int");
do_calc<test_traits<boost::int64_t, number<cpp_int_backend<>, et_off> > >("int64_t, cpp_int (no ET's)");
do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128> > > >("int64_t, cpp_int(128-bit cache)");
do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128>, et_off> > >("int64_t, cpp_int (128-bit Cache no ET's)");
return 0;
}
|