1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
|
///////////////////////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
/* 1000d.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include <iostream>
#include <iomanip>
#include <cmath>
#if defined(TEST_GMPXX)
#include <gmpxx.h>
typedef mpf_class real_type;
#elif defined(TEST_MPFRXX)
#include <gmpfrxx.h>
typedef mpfr_class real_type;
#elif defined(TEST_CPP_DEC_FLOAT)
#include <boost/multiprecision/cpp_dec_float.hpp>
typedef boost::multiprecision::cpp_dec_float_50 real_type;
#elif defined(TEST_MPFR_50)
#include <boost/multiprecision/mpfr.hpp>
typedef boost::multiprecision::mpfr_float_50 real_type;
#elif defined(TEST_MPF_50)
#include <boost/multiprecision/gmp.hpp>
typedef boost::multiprecision::mpf_float_50 real_type;
#elif defined(NATIVE_FLOAT128)
#include <boost/multiprecision/float128.hpp>
typedef __float128 real_type;
std::ostream& operator<<(std::ostream& os, const __float128& f)
{
return os << boost::multiprecision::float128(f);
}
#include <boost/type_traits/has_left_shift.hpp>
namespace boost{
template<>
struct has_left_shift<std::basic_ostream<char>, __float128> : public mpl::true_ {};
template<>
double lexical_cast<double, __float128>(const __float128& f)
{ return f; }
}
#elif defined(TEST_FLOAT128)
#include <boost/multiprecision/float128.hpp>
typedef boost::multiprecision::float128 real_type;
#elif defined(TEST_CPP_BIN_FLOAT_QUAD)
#include <boost/multiprecision/cpp_bin_float.hpp>
typedef boost::multiprecision::cpp_bin_float_quad real_type;
#else
typedef double real_type;
#endif
#include <boost/lexical_cast.hpp>
#ifndef CAST_TO_RT
# define CAST_TO_RT(x) x
#endif
extern "C" {
#include "f2c.h"
integer s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen),
s_wsle(cilist *), do_lio(integer *, integer *, char *, ftnlen),
e_wsle(void);
/* Subroutine */ int s_stop(char *, ftnlen);
#undef abs
#undef dabs
#define dabs abs
#undef dmin
#undef dmax
#define dmin min
#define dmax max
}
#include <time.h>
using std::min;
using std::max;
/* Table of constant values */
static integer c__0 = 0;
static real_type c_b7 = CAST_TO_RT(1);
static integer c__1 = 1;
static integer c__9 = 9;
inline double second_(void)
{
return ((double)(clock())) / CLOCKS_PER_SEC;
}
int dgefa_(real_type *, integer *, integer *, integer *, integer *), dgesl_(real_type *, integer *, integer *, integer *, real_type *, integer *);
int dmxpy_(integer *, real_type *, integer *, integer *, real_type *, real_type *);
int matgen_(real_type *, integer *, integer *, real_type *, real_type *);
real_type epslon_(real_type *);
real_type ran_(integer *);
int dscal_(integer *, real_type *, real_type *, integer *);
int daxpy_(integer *, real_type *, real_type *, integer *, real_type *, integer *);
integer idamax_(integer *, real_type *, integer *);
real_type ddot_(integer *, real_type *, integer *, real_type *, integer *);
int daxpy_(integer *, real_type *, real_type *, integer *, real_type *, integer *);
int dmxpy_(integer *, real_type *, integer *, integer *, real_type *, real_type *);
extern "C" int MAIN__()
{
#ifdef TEST_MPF_50
std::cout << "Testing number<mpf_float<50> >" << std::endl;
#elif defined(TEST_MPFR_50)
std::cout << "Testing number<mpf_float<50> >" << std::endl;
#elif defined(TEST_GMPXX)
std::cout << "Testing mpf_class at 50 decimal degits" << std::endl;
mpf_set_default_prec(((50 + 1) * 1000L) / 301L);
#elif defined(TEST_MPFRXX)
std::cout << "Testing mpfr_class at 50 decimal degits" << std::endl;
mpfr_set_default_prec(((50 + 1) * 1000L) / 301L);
#elif defined(TEST_CPP_DEC_FLOAT)
std::cout << "Testing number<cpp_dec_float<50> >" << std::endl;
#elif defined(NATIVE_FLOAT128)
std::cout << "Testing __float128" << std::endl;
#elif defined(TEST_FLOAT128)
std::cout << "Testing number<float128_backend, et_off>" << std::endl;
#else
std::cout << "Testing double" << std::endl;
#endif
/* Format strings */
static char fmt_1[] = "(\002 Please send the results of this run to:\002"
"//\002 Jack J. Dongarra\002/\002 Computer Science Department\002/"
"\002 University of Tennessee\002/\002 Knoxville, Tennessee 37996"
"-1300\002//\002 Fax: 615-974-8296\002//\002 Internet: dongarra@c"
"s.utk.edu\002/)";
static char fmt_40[] = "(\002 norm. resid resid mac"
"hep\002,\002 x(1) x(n)\002)";
static char fmt_50[] = "(1p5e16.8)";
static char fmt_60[] = "(//\002 times are reported for matrices of or"
"der \002,i5)";
static char fmt_70[] = "(6x,\002factor\002,5x,\002solve\002,6x,\002tota"
"l\002,5x,\002mflops\002,7x,\002unit\002,6x,\002ratio\002)";
static char fmt_80[] = "(\002 times for array with leading dimension o"
"f\002,i4)";
static char fmt_110[] = "(6(1pe11.3))";
/* System generated locals */
integer i__1;
real_type d__1, d__2, d__3;
/* Builtin functions */
/* Local variables */
static real_type a[1001000] /* was [1001][1000] */, b[1000];
static integer i__, n;
static real_type x[1000];
static double t1;
static integer lda;
static double ops;
static real_type eps;
static integer info;
static double time[6], cray, total;
static integer ipvt[1000];
static real_type resid, norma;
static real_type normx;
static real_type residn;
/* Fortran I/O blocks */
static cilist io___4 = { 0, 6, 0, fmt_1, 0 };
static cilist io___20 = { 0, 6, 0, fmt_40, 0 };
static cilist io___21 = { 0, 6, 0, fmt_50, 0 };
static cilist io___22 = { 0, 6, 0, fmt_60, 0 };
static cilist io___23 = { 0, 6, 0, fmt_70, 0 };
static cilist io___24 = { 0, 6, 0, fmt_80, 0 };
static cilist io___25 = { 0, 6, 0, fmt_110, 0 };
static cilist io___26 = { 0, 6, 0, 0, 0 };
lda = 1001;
/* this program was updated on 10/12/92 to correct a */
/* problem with the random number generator. The previous */
/* random number generator had a short period and produced */
/* singular matrices occasionally. */
n = 1000;
cray = .056f;
s_wsfe(&io___4);
e_wsfe();
/* Computing 3rd power */
d__1 = (real_type) n;
/* Computing 2nd power */
d__2 = (real_type) n;
ops = boost::lexical_cast<double>(real_type(d__1 * (d__1 * d__1) * 2. / 3. + d__2 * d__2 * 2.));
matgen_(a, &lda, &n, b, &norma);
/* ****************************************************************** */
/* ****************************************************************** */
/* you should replace the call to dgefa and dgesl */
/* by calls to your linear equation solver. */
/* ****************************************************************** */
/* ****************************************************************** */
t1 = second_();
dgefa_(a, &lda, &n, ipvt, &info);
time[0] = second_() - t1;
t1 = second_();
dgesl_(a, &lda, &n, ipvt, b, &c__0);
time[1] = second_() - t1;
total = time[0] + time[1];
/* ****************************************************************** */
/* ****************************************************************** */
/* compute a residual to verify results. */
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__ - 1] = b[i__ - 1];
/* L10: */
}
matgen_(a, &lda, &n, b, &norma);
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
b[i__ - 1] = -b[i__ - 1];
/* L20: */
}
dmxpy_(&n, b, &n, &lda, x, a);
resid = CAST_TO_RT(0);
normx = CAST_TO_RT(0);
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__2 = resid, d__3 = (d__1 = b[i__ - 1], abs(d__1));
resid = (max)(d__2,d__3);
/* Computing MAX */
d__2 = normx, d__3 = (d__1 = x[i__ - 1], abs(d__1));
normx = (max)(d__2,d__3);
/* L30: */
}
eps = epslon_(&c_b7);
residn = resid / (n * norma * normx * eps);
s_wsfe(&io___20);
e_wsfe();
s_wsfe(&io___21);
/*
do_fio(&c__1, (char *)&residn, (ftnlen)sizeof(real_type));
do_fio(&c__1, (char *)&resid, (ftnlen)sizeof(real_type));
do_fio(&c__1, (char *)&eps, (ftnlen)sizeof(real_type));
do_fio(&c__1, (char *)&x[0], (ftnlen)sizeof(real_type));
do_fio(&c__1, (char *)&x[n - 1], (ftnlen)sizeof(real_type));
*/
std::cout << std::setw(12) << std::setprecision(5) << residn << " " << resid << " " << eps << " " << x[0] << " " << x[n-1] << std::endl;
e_wsfe();
s_wsfe(&io___22);
do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
e_wsfe();
s_wsfe(&io___23);
e_wsfe();
time[2] = total;
time[3] = ops / (total * 1e6);
time[4] = 2. / time[3];
time[5] = total / cray;
s_wsfe(&io___24);
do_fio(&c__1, (char *)&lda, (ftnlen)sizeof(integer));
e_wsfe();
s_wsfe(&io___25);
for (i__ = 1; i__ <= 6; ++i__) {
// do_fio(&c__1, (char *)&time[i__ - 1], (ftnlen)sizeof(real_type));
std::cout << std::setw(12) << std::setprecision(5) << time[i__ - 1];
}
e_wsfe();
s_wsle(&io___26);
do_lio(&c__9, &c__1, " end of tests -- this version dated 10/12/92", (
ftnlen)44);
e_wsle();
s_stop("", (ftnlen)0);
return 0;
} /* MAIN__ */
/* Subroutine */ int matgen_(real_type *a, integer *lda, integer *n,
real_type *b, real_type *norma)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real_type d__1, d__2;
/* Local variables */
static integer i__, j;
static integer init[4];
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--b;
/* Function Body */
init[0] = 1;
init[1] = 2;
init[2] = 3;
init[3] = 1325;
*norma = CAST_TO_RT(0);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = ran_(init) - .5f;
/* Computing MAX */
d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
*norma = (max)(d__2,*norma);
/* L20: */
}
/* L30: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
b[i__] = CAST_TO_RT(0);
/* L35: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__] += a[i__ + j * a_dim1];
/* L40: */
}
/* L50: */
}
return 0;
} /* matgen_ */
/* Subroutine */ int dgefa_(real_type *a, integer *lda, integer *n, integer *
ipvt, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static integer j, k, l;
static real_type t;
static integer kp1, nm1;
/* dgefa factors a double precision matrix by gaussian elimination. */
/* dgefa is usually called by dgeco, but it can be called */
/* directly with a saving in time if rcond is not needed. */
/* (time for dgeco) = (1 + 9/n)*(time for dgefa) . */
/* on entry */
/* a double precision(lda, n) */
/* the matrix to be factored. */
/* lda integer */
/* the leading dimension of the array a . */
/* n integer */
/* the order of the matrix a . */
/* on return */
/* a an upper triangular matrix and the multipliers */
/* which were used to obtain it. */
/* the factorization can be written a = l*u where */
/* l is a product of permutation and unit lower */
/* triangular matrices and u is upper triangular. */
/* ipvt integer(n) */
/* an integer vector of pivot indices. */
/* info integer */
/* = 0 normal value. */
/* = k if u(k,k) .eq. 0.0 . this is not an error */
/* condition for this subroutine, but it does */
/* indicate that dgesl or dgedi will divide by zero */
/* if called. use rcond in dgeco for a reliable */
/* indication of singularity. */
/* linpack. this version dated 08/14/78 . */
/* cleve moler, university of new mexico, argonne national lab. */
/* subroutines and functions */
/* blas daxpy,dscal,idamax */
/* internal variables */
/* gaussian elimination with partial pivoting */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipvt;
/* Function Body */
*info = 0;
nm1 = *n - 1;
if (nm1 < 1) {
goto L70;
}
i__1 = nm1;
for (k = 1; k <= i__1; ++k) {
kp1 = k + 1;
/* find l = pivot index */
i__2 = *n - k + 1;
l = idamax_(&i__2, &a[k + k * a_dim1], &c__1) + k - 1;
ipvt[k] = l;
/* zero pivot implies this column already triangularized */
if (a[l + k * a_dim1] == 0.) {
goto L40;
}
/* interchange if necessary */
if (l == k) {
goto L10;
}
t = a[l + k * a_dim1];
a[l + k * a_dim1] = a[k + k * a_dim1];
a[k + k * a_dim1] = t;
L10:
/* compute multipliers */
t = -1. / a[k + k * a_dim1];
i__2 = *n - k;
dscal_(&i__2, &t, &a[k + 1 + k * a_dim1], &c__1);
/* row elimination with column indexing */
i__2 = *n;
for (j = kp1; j <= i__2; ++j) {
t = a[l + j * a_dim1];
if (l == k) {
goto L20;
}
a[l + j * a_dim1] = a[k + j * a_dim1];
a[k + j * a_dim1] = t;
L20:
i__3 = *n - k;
daxpy_(&i__3, &t, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1 + j *
a_dim1], &c__1);
/* L30: */
}
goto L50;
L40:
*info = k;
L50:
/* L60: */
;
}
L70:
ipvt[*n] = *n;
if (a[*n + *n * a_dim1] == 0.) {
*info = *n;
}
return 0;
} /* dgefa_ */
/* Subroutine */ int dgesl_(real_type *a, integer *lda, integer *n, integer *
ipvt, real_type *b, integer *job)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
static integer k, l;
static real_type t;
static integer kb, nm1;
/* dgesl solves the double precision system */
/* a * x = b or trans(a) * x = b */
/* using the factors computed by dgeco or dgefa. */
/* on entry */
/* a double precision(lda, n) */
/* the output from dgeco or dgefa. */
/* lda integer */
/* the leading dimension of the array a . */
/* n integer */
/* the order of the matrix a . */
/* ipvt integer(n) */
/* the pivot vector from dgeco or dgefa. */
/* b double precision(n) */
/* the right hand side vector. */
/* job integer */
/* = 0 to solve a*x = b , */
/* = nonzero to solve trans(a)*x = b where */
/* trans(a) is the transpose. */
/* on return */
/* b the solution vector x . */
/* error condition */
/* a division by zero will occur if the input factor contains a */
/* zero on the diagonal. technically this indicates singularity */
/* but it is often caused by improper arguments or improper */
/* setting of lda . it will not occur if the subroutines are */
/* called correctly and if dgeco has set rcond .gt. 0.0 */
/* or dgefa has set info .eq. 0 . */
/* to compute inverse(a) * c where c is a matrix */
/* with p columns */
/* call dgeco(a,lda,n,ipvt,rcond,z) */
/* if (rcond is too small) go to ... */
/* do 10 j = 1, p */
/* call dgesl(a,lda,n,ipvt,c(1,j),0) */
/* 10 continue */
/* linpack. this version dated 08/14/78 . */
/* cleve moler, university of new mexico, argonne national lab. */
/* subroutines and functions */
/* blas daxpy,ddot */
/* internal variables */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipvt;
--b;
/* Function Body */
nm1 = *n - 1;
if (*job != 0) {
goto L50;
}
/* job = 0 , solve a * x = b */
/* first solve l*y = b */
if (nm1 < 1) {
goto L30;
}
i__1 = nm1;
for (k = 1; k <= i__1; ++k) {
l = ipvt[k];
t = b[l];
if (l == k) {
goto L10;
}
b[l] = b[k];
b[k] = t;
L10:
i__2 = *n - k;
daxpy_(&i__2, &t, &a[k + 1 + k * a_dim1], &c__1, &b[k + 1], &c__1);
/* L20: */
}
L30:
/* now solve u*x = y */
i__1 = *n;
for (kb = 1; kb <= i__1; ++kb) {
k = *n + 1 - kb;
b[k] /= a[k + k * a_dim1];
t = -b[k];
i__2 = k - 1;
daxpy_(&i__2, &t, &a[k * a_dim1 + 1], &c__1, &b[1], &c__1);
/* L40: */
}
goto L100;
L50:
/* job = nonzero, solve trans(a) * x = b */
/* first solve trans(u)*y = b */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
i__2 = k - 1;
t = ddot_(&i__2, &a[k * a_dim1 + 1], &c__1, &b[1], &c__1);
b[k] = (b[k] - t) / a[k + k * a_dim1];
/* L60: */
}
/* now solve trans(l)*x = y */
if (nm1 < 1) {
goto L90;
}
i__1 = nm1;
for (kb = 1; kb <= i__1; ++kb) {
k = *n - kb;
i__2 = *n - k;
b[k] += ddot_(&i__2, &a[k + 1 + k * a_dim1], &c__1, &b[k + 1], &c__1);
l = ipvt[k];
if (l == k) {
goto L70;
}
t = b[l];
b[l] = b[k];
b[k] = t;
L70:
/* L80: */
;
}
L90:
L100:
return 0;
} /* dgesl_ */
/* Subroutine */ int daxpy_(integer *n, real_type *da, real_type *dx,
integer *incx, real_type *dy, integer *incy)
{
/* System generated locals */
integer i__1;
/* Local variables */
static integer i__, m, ix, iy, mp1;
/* constant times a vector plus a vector. */
/* uses unrolled loops for increments equal to one. */
/* jack dongarra, linpack, 3/11/78. */
/* Parameter adjustments */
--dy;
--dx;
/* Function Body */
if (*n <= 0) {
return 0;
}
if (*da == 0.) {
return 0;
}
if (*incx == 1 && *incy == 1) {
goto L20;
}
/* code for unequal increments or equal increments */
/* not equal to 1 */
ix = 1;
iy = 1;
if (*incx < 0) {
ix = (-(*n) + 1) * *incx + 1;
}
if (*incy < 0) {
iy = (-(*n) + 1) * *incy + 1;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
dy[iy] += *da * dx[ix];
ix += *incx;
iy += *incy;
/* L10: */
}
return 0;
/* code for both increments equal to 1 */
/* clean-up loop */
L20:
m = *n % 4;
if (m == 0) {
goto L40;
}
i__1 = m;
for (i__ = 1; i__ <= i__1; ++i__) {
dy[i__] += *da * dx[i__];
/* L30: */
}
if (*n < 4) {
return 0;
}
L40:
mp1 = m + 1;
i__1 = *n;
for (i__ = mp1; i__ <= i__1; i__ += 4) {
dy[i__] += *da * dx[i__];
dy[i__ + 1] += *da * dx[i__ + 1];
dy[i__ + 2] += *da * dx[i__ + 2];
dy[i__ + 3] += *da * dx[i__ + 3];
/* L50: */
}
return 0;
} /* daxpy_ */
real_type ddot_(integer *n, real_type *dx, integer *incx, real_type *dy,
integer *incy)
{
/* System generated locals */
integer i__1;
real_type ret_val;
/* Local variables */
static integer i__, m, ix, iy, mp1;
static real_type dtemp;
/* forms the dot product of two vectors. */
/* uses unrolled loops for increments equal to one. */
/* jack dongarra, linpack, 3/11/78. */
/* Parameter adjustments */
--dy;
--dx;
/* Function Body */
ret_val = CAST_TO_RT(0);
dtemp = CAST_TO_RT(0);
if (*n <= 0) {
return ret_val;
}
if (*incx == 1 && *incy == 1) {
goto L20;
}
/* code for unequal increments or equal increments */
/* not equal to 1 */
ix = 1;
iy = 1;
if (*incx < 0) {
ix = (-(*n) + 1) * *incx + 1;
}
if (*incy < 0) {
iy = (-(*n) + 1) * *incy + 1;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
dtemp += dx[ix] * dy[iy];
ix += *incx;
iy += *incy;
/* L10: */
}
ret_val = dtemp;
return ret_val;
/* code for both increments equal to 1 */
/* clean-up loop */
L20:
m = *n % 5;
if (m == 0) {
goto L40;
}
i__1 = m;
for (i__ = 1; i__ <= i__1; ++i__) {
dtemp += dx[i__] * dy[i__];
/* L30: */
}
if (*n < 5) {
goto L60;
}
L40:
mp1 = m + 1;
i__1 = *n;
for (i__ = mp1; i__ <= i__1; i__ += 5) {
dtemp = dtemp + dx[i__] * dy[i__] + dx[i__ + 1] * dy[i__ + 1] + dx[
i__ + 2] * dy[i__ + 2] + dx[i__ + 3] * dy[i__ + 3] + dx[i__ +
4] * dy[i__ + 4];
/* L50: */
}
L60:
ret_val = dtemp;
return ret_val;
} /* ddot_ */
/* Subroutine */ int dscal_(integer *n, real_type *da, real_type *dx,
integer *incx)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
static integer i__, m, mp1, nincx;
/* scales a vector by a constant. */
/* uses unrolled loops for increment equal to one. */
/* jack dongarra, linpack, 3/11/78. */
/* Parameter adjustments */
--dx;
/* Function Body */
if (*n <= 0) {
return 0;
}
if (*incx == 1) {
goto L20;
}
/* code for increment not equal to 1 */
nincx = *n * *incx;
i__1 = nincx;
i__2 = *incx;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
dx[i__] = *da * dx[i__];
/* L10: */
}
return 0;
/* code for increment equal to 1 */
/* clean-up loop */
L20:
m = *n % 5;
if (m == 0) {
goto L40;
}
i__2 = m;
for (i__ = 1; i__ <= i__2; ++i__) {
dx[i__] = *da * dx[i__];
/* L30: */
}
if (*n < 5) {
return 0;
}
L40:
mp1 = m + 1;
i__2 = *n;
for (i__ = mp1; i__ <= i__2; i__ += 5) {
dx[i__] = *da * dx[i__];
dx[i__ + 1] = *da * dx[i__ + 1];
dx[i__ + 2] = *da * dx[i__ + 2];
dx[i__ + 3] = *da * dx[i__ + 3];
dx[i__ + 4] = *da * dx[i__ + 4];
/* L50: */
}
return 0;
} /* dscal_ */
integer idamax_(integer *n, real_type *dx, integer *incx)
{
/* System generated locals */
integer ret_val, i__1;
real_type d__1;
/* Local variables */
static integer i__, ix;
static real_type dmax__;
/* finds the index of element having max. dabsolute value. */
/* jack dongarra, linpack, 3/11/78. */
/* Parameter adjustments */
--dx;
/* Function Body */
ret_val = 0;
if (*n < 1) {
return ret_val;
}
ret_val = 1;
if (*n == 1) {
return ret_val;
}
if (*incx == 1) {
goto L20;
}
/* code for increment not equal to 1 */
ix = 1;
dmax__ = abs(dx[1]);
ix += *incx;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
if ((d__1 = dx[ix], abs(d__1)) <= dmax__) {
goto L5;
}
ret_val = i__;
dmax__ = (d__1 = dx[ix], abs(d__1));
L5:
ix += *incx;
/* L10: */
}
return ret_val;
/* code for increment equal to 1 */
L20:
dmax__ = abs(dx[1]);
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
if ((d__1 = dx[i__], abs(d__1)) <= dmax__) {
goto L30;
}
ret_val = i__;
dmax__ = (d__1 = dx[i__], abs(d__1));
L30:
;
}
return ret_val;
} /* idamax_ */
real_type epslon_(real_type *x)
{
#if defined(TEST_MPF_100) || defined(TEST_MPFR_100) || defined(TEST_GMPXX) || defined(TEST_MPFRXX)
return std::ldexp(1.0, 1 - ((100 + 1) * 1000L) / 301L);
#elif defined(TEST_CPP_DEC_FLOAT_BN)
return std::pow(10.0, 1-std::numeric_limits<efx::cpp_dec_float_50>::digits10);
#elif defined(NATIVE_FLOAT128)
return FLT128_EPSILON;
#else
return CAST_TO_RT(std::numeric_limits<real_type>::epsilon());
#endif
} /* epslon_ */
/* Subroutine */ int mm_(real_type *a, integer *lda, integer *n1, integer *
n3, real_type *b, integer *ldb, integer *n2, real_type *c__,
integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2;
/* Local variables */
static integer i__, j;
/* purpose: */
/* multiply matrix b times matrix c and store the result in matrix a. */
/* parameters: */
/* a double precision(lda,n3), matrix of n1 rows and n3 columns */
/* lda integer, leading dimension of array a */
/* n1 integer, number of rows in matrices a and b */
/* n3 integer, number of columns in matrices a and c */
/* b double precision(ldb,n2), matrix of n1 rows and n2 columns */
/* ldb integer, leading dimension of array b */
/* n2 integer, number of columns in matrix b, and number of rows in */
/* matrix c */
/* c double precision(ldc,n3), matrix of n2 rows and n3 columns */
/* ldc integer, leading dimension of array c */
/* ---------------------------------------------------------------------- */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
i__1 = *n3;
for (j = 1; j <= i__1; ++j) {
i__2 = *n1;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = CAST_TO_RT(0);
/* L10: */
}
dmxpy_(n2, &a[j * a_dim1 + 1], n1, ldb, &c__[j * c_dim1 + 1], &b[
b_offset]);
/* L20: */
}
return 0;
} /* mm_ */
/* Subroutine */ int dmxpy_(integer *n1, real_type *y, integer *n2, integer *
ldm, real_type *x, real_type *m)
{
/* System generated locals */
integer m_dim1, m_offset, i__1, i__2;
/* Local variables */
static integer i__, j, jmin;
/* purpose: */
/* multiply matrix m times vector x and add the result to vector y. */
/* parameters: */
/* n1 integer, number of elements in vector y, and number of rows in */
/* matrix m */
/* y double precision(n1), vector of length n1 to which is added */
/* the product m*x */
/* n2 integer, number of elements in vector x, and number of columns */
/* in matrix m */
/* ldm integer, leading dimension of array m */
/* x double precision(n2), vector of length n2 */
/* m double precision(ldm,n2), matrix of n1 rows and n2 columns */
/* ---------------------------------------------------------------------- */
/* cleanup odd vector */
/* Parameter adjustments */
--y;
m_dim1 = *ldm;
m_offset = 1 + m_dim1;
m -= m_offset;
--x;
/* Function Body */
j = *n2 % 2;
if (j >= 1) {
i__1 = *n1;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] += x[j] * m[i__ + j * m_dim1];
/* L10: */
}
}
/* cleanup odd group of two vectors */
j = *n2 % 4;
if (j >= 2) {
i__1 = *n1;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = y[i__] + x[j - 1] * m[i__ + (j - 1) * m_dim1] + x[j] * m[
i__ + j * m_dim1];
/* L20: */
}
}
/* cleanup odd group of four vectors */
j = *n2 % 8;
if (j >= 4) {
i__1 = *n1;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = y[i__] + x[j - 3] * m[i__ + (j - 3) * m_dim1] + x[j - 2]
* m[i__ + (j - 2) * m_dim1] + x[j - 1] * m[i__ + (j - 1) *
m_dim1] + x[j] * m[i__ + j * m_dim1];
/* L30: */
}
}
/* cleanup odd group of eight vectors */
j = *n2 % 16;
if (j >= 8) {
i__1 = *n1;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = y[i__] + x[j - 7] * m[i__ + (j - 7) * m_dim1] + x[j - 6]
* m[i__ + (j - 6) * m_dim1] + x[j - 5] * m[i__ + (j - 5) *
m_dim1] + x[j - 4] * m[i__ + (j - 4) * m_dim1] + x[j - 3]
* m[i__ + (j - 3) * m_dim1] + x[j - 2] * m[i__ + (j - 2)
* m_dim1] + x[j - 1] * m[i__ + (j - 1) * m_dim1] + x[j] *
m[i__ + j * m_dim1];
/* L40: */
}
}
/* main loop - groups of sixteen vectors */
jmin = j + 16;
i__1 = *n2;
for (j = jmin; j <= i__1; j += 16) {
i__2 = *n1;
for (i__ = 1; i__ <= i__2; ++i__) {
y[i__] = y[i__] + x[j - 15] * m[i__ + (j - 15) * m_dim1] + x[j -
14] * m[i__ + (j - 14) * m_dim1] + x[j - 13] * m[i__ + (j
- 13) * m_dim1] + x[j - 12] * m[i__ + (j - 12) * m_dim1]
+ x[j - 11] * m[i__ + (j - 11) * m_dim1] + x[j - 10] * m[
i__ + (j - 10) * m_dim1] + x[j - 9] * m[i__ + (j - 9) *
m_dim1] + x[j - 8] * m[i__ + (j - 8) * m_dim1] + x[j - 7]
* m[i__ + (j - 7) * m_dim1] + x[j - 6] * m[i__ + (j - 6) *
m_dim1] + x[j - 5] * m[i__ + (j - 5) * m_dim1] + x[j - 4]
* m[i__ + (j - 4) * m_dim1] + x[j - 3] * m[i__ + (j - 3)
* m_dim1] + x[j - 2] * m[i__ + (j - 2) * m_dim1] + x[j -
1] * m[i__ + (j - 1) * m_dim1] + x[j] * m[i__ + j *
m_dim1];
/* L50: */
}
/* L60: */
}
return 0;
} /* dmxpy_ */
real_type ran_(integer *iseed)
{
/* System generated locals */
real_type ret_val;
/* Local variables */
static integer it1, it2, it3, it4;
/* modified from the LAPACK auxiliary routine 10/12/92 JD */
/* -- LAPACK auxiliary routine (version 1.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLARAN returns a random double number from a uniform (0,1) */
/* distribution. */
/* Arguments */
/* ========= */
/* ISEED (input/output) INTEGER array, dimension (4) */
/* On entry, the seed of the random number generator; the array */
/* elements must be between 0 and 4095, and ISEED(4) must be */
/* odd. */
/* On exit, the seed is updated. */
/* Further Details */
/* =============== */
/* This routine uses a multiplicative congruential method with modulus */
/* 2**48 and multiplier 33952834046453 (see G.S.Fishman, */
/* 'Multiplicative congruential random number generators with modulus */
/* 2**b: an exhaustive analysis for b = 32 and a partial analysis for */
/* b = 48', Math. Comp. 189, pp 331-344, 1990). */
/* 48-bit integers are stored in 4 integer array elements with 12 bits */
/* per element. Hence the routine is portable across machines with */
/* integers of 32 bits or more. */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* multiply the seed by the multiplier modulo 2**48 */
/* Parameter adjustments */
--iseed;
/* Function Body */
it4 = iseed[4] * 2549;
it3 = it4 / 4096;
it4 -= it3 << 12;
it3 = it3 + iseed[3] * 2549 + iseed[4] * 2508;
it2 = it3 / 4096;
it3 -= it2 << 12;
it2 = it2 + iseed[2] * 2549 + iseed[3] * 2508 + iseed[4] * 322;
it1 = it2 / 4096;
it2 -= it1 << 12;
it1 = it1 + iseed[1] * 2549 + iseed[2] * 2508 + iseed[3] * 322 + iseed[4]
* 494;
it1 %= 4096;
/* return updated seed */
iseed[1] = it1;
iseed[2] = it2;
iseed[3] = it3;
iseed[4] = it4;
/* convert 48-bit integer to a double number in the interval (0,1) */
ret_val = ((real_type) it1 + ((real_type) it2 + ((real_type) it3 + (
real_type) it4 * 2.44140625e-4) * 2.44140625e-4) * 2.44140625e-4)
* 2.44140625e-4;
return ret_val;
/* End of RAN */
} /* ran_ */
/*
Double results:
~~~~~~~~~~~~~~
norm. resid resid machep x(1) x(n)
6.4915 7.207e-013 2.2204e-016 1 1
times are reported for matrices of order 1000
factor solve total mflops unit ratio
times for array with leading dimension of1001
1.443 0.003 1.446 462.43 0.004325 25.821
mpf_class results:
~~~~~~~~~~~~~~~~~~
norm. resid resid machep x(1) x(n)
3.6575e-05 5.2257e-103 2.8575e-101 1 1
times are reported for matrices of order 1000
factor solve total mflops unit ratio
times for array with leading dimension of1001
266.45 0.798 267.24 2.5021 0.79933 4772.2
number<gmp_float<100> >:
~~~~~~~~~~~~~~~~~~~~~~~~~~~
norm. resid resid machep x(1) x(n)
0.36575e-4 0.52257e-102 0.28575e-100 0.1e1 0.1e1
times are reported for matrices of order 1000
factor solve total mflops unit ratio
times for array with leading dimension of1001
279.96 0.84 280.8 2.3813 0.83988 5014.3
boost::multiprecision::ef::cpp_dec_float_50:
~~~~~~~~~~~~~~~~~~~~~~~~~
norm. resid resid machep x(1) x(n)
2.551330735e-16 1.275665107e-112 1e-99 1 1
times are reported for matrices of order 1000
factor solve total mflops unit ratio
times for array with leading dimension of1001
363.89 1.074 364.97 1.8321 1.0916 6517.3
*/
|