1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
<?xml version="1.0" encoding="utf-8"?>
<!--
Copyright 2012 Eric Niebler
Distributed under the Boost
Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-->
<header name="boost/proto/transform/impl.hpp">
<para>Contains definition of transform<> and transform_impl<> helpers. </para>
<namespace name="boost">
<namespace name="proto">
<!-- proto::transform -->
<struct name="transform">
<template>
<template-type-parameter name="PrimitiveTransform"/>
</template>
<purpose>Inherit from this to make your type a <conceptname>PrimitiveTransform</conceptname>.</purpose>
<struct-specialization name="result">
<template>
<template-type-parameter name="This"/>
<template-type-parameter name="Expr"/>
</template>
<specialization>
<template-arg>This(Expr)</template-arg>
</specialization>
<typedef name="type">
<type>typename PrimitiveTransform::template impl< Expr, <replaceable>unspecified</replaceable>, <replaceable>unspecified</replaceable> >::result_type</type>
</typedef>
</struct-specialization>
<struct-specialization name="result">
<template>
<template-type-parameter name="This"/>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
</template>
<specialization>
<template-arg>This(Expr, State)</template-arg>
</specialization>
<typedef name="type">
<type>typename PrimitiveTransform::template impl< Expr, State, <replaceable>unspecified</replaceable> >::result_type</type>
</typedef>
</struct-specialization>
<struct-specialization name="result">
<template>
<template-type-parameter name="This"/>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
<template-type-parameter name="Data"/>
</template>
<specialization>
<template-arg>This(Expr, State, Data)</template-arg>
</specialization>
<typedef name="type">
<type>typename PrimitiveTransform::template impl< Expr, State, Data >::result_type</type>
</typedef>
</struct-specialization>
<typedef name="transform_type">
<type>PrimitiveTransform</type>
</typedef>
<method-group name="public member functions">
<method name="operator()" cv="const">
<type>typename PrimitiveTransform::template impl<Expr &, <replaceable>unspecified</replaceable>, <replaceable>unspecified</replaceable>>::result_type</type>
<template>
<template-type-parameter name="Expr"/>
</template>
<parameter name="expr">
<paramtype>Expr &</paramtype>
</parameter>
<returns>
<computeroutput>
typename PrimitiveTransform::template impl<Expr &, <replaceable>unspecified</replaceable>, <replaceable>unspecified</replaceable>>()(expr, <replaceable>unspecified</replaceable>, <replaceable>unspecified</replaceable>)
</computeroutput>
</returns>
</method>
<method name="operator()" cv="const">
<type>typename PrimitiveTransform::template impl<Expr &, State &, <replaceable>unspecified</replaceable>>::result_type</type>
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
</template>
<parameter name="expr">
<paramtype>Expr &</paramtype>
</parameter>
<parameter name="state">
<paramtype>State &</paramtype>
</parameter>
<returns>
<computeroutput>
typename PrimitiveTransform::template impl<Expr &, State &, <replaceable>unspecified</replaceable>>()(expr, state, <replaceable>unspecified</replaceable>)
</computeroutput>
</returns>
</method>
<method name="operator()" cv="const">
<type>typename PrimitiveTransform::template impl<Expr &, State const &, <replaceable>unspecified</replaceable>>::result_type</type>
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
</template>
<parameter name="expr">
<paramtype>Expr &</paramtype>
</parameter>
<parameter name="state">
<paramtype>State const &</paramtype>
</parameter>
<returns>
<computeroutput>
typename PrimitiveTransform::template impl<Expr &, State const &, <replaceable>unspecified</replaceable>>()(expr, state, <replaceable>unspecified</replaceable>)
</computeroutput>
</returns>
</method>
<method name="operator()" cv="const">
<type>typename PrimitiveTransform::template impl<Expr &, State &, Data &>::result_type</type>
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
<template-type-parameter name="Data"/>
</template>
<parameter name="expr">
<paramtype>Expr &</paramtype>
</parameter>
<parameter name="state">
<paramtype>State &</paramtype>
</parameter>
<parameter name="data">
<paramtype>Data &</paramtype>
</parameter>
<returns>
<computeroutput>
typename PrimitiveTransform::template impl<Expr &, State &, Data &>()(expr, state, data)
</computeroutput>
</returns>
</method>
<method name="operator()" cv="const">
<type>typename PrimitiveTransform::template impl<Expr &, State const &, Data &>::result_type</type>
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
<template-type-parameter name="Data"/>
</template>
<parameter name="expr">
<paramtype>Expr &</paramtype>
</parameter>
<parameter name="state">
<paramtype>State const &</paramtype>
</parameter>
<parameter name="data">
<paramtype>Data &</paramtype>
</parameter>
<returns>
<computeroutput>
typename PrimitiveTransform::template impl<Expr &, State const &, Data &>()(expr, state, data)
</computeroutput>
</returns>
</method>
</method-group>
</struct>
<!-- proto::transform_impl -->
<struct name="transform_impl">
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
<template-type-parameter name="Data"/>
</template>
<typedef name="expr">
<type>typename boost::remove_reference<Expr const>::type</type>
</typedef>
<typedef name="expr_param">
<type>typename boost::add_reference<Expr const>::type</type>
</typedef>
<typedef name="state">
<type>typename boost::remove_reference<State const>::type</type>
</typedef>
<typedef name="state_param">
<type>typename boost::add_reference<State const>::type</type>
</typedef>
<typedef name="data">
<type>typename boost::remove_reference<Data const>::type</type>
</typedef>
<typedef name="data_param">
<type>typename boost::add_reference<Data const>::type</type>
</typedef>
</struct>
<!-- proto::pack -->
<struct name="pack">
<purpose>To turn an expression into a pseudo-parameter pack containing the
expression's children, for the purpose of expanding the pack expression within
a <conceptname>CallableTransform</conceptname> or
<conceptname>ObjectTransform</conceptname>.</purpose>
<description>
<para>
<computeroutput>proto::pack</computeroutput> is useful within
<conceptname>CallableTransform</conceptname>s and
<conceptname>ObjectTransform</conceptname>s when one wishes to unpack an expression
into a function call or an object constructor. <computeroutput>proto::pack</computeroutput>
turns a Proto expression into a pseudo-parameter pack, which may appear in an unpacking
pattern to be expanded with the "<computeroutput>...</computeroutput>" syntax.
</para>
<para>
<emphasis role="bold">Example:</emphasis>
</para>
<para>
<programlisting>// The following demonstrates how to use a pseudo-pack expansion
// to unpack an expression into a function call.
struct do_sum : <classname alt="boost::proto::callable">proto::callable</classname>
{
typedef int result_type;
int operator()(int i) const { return i; }
int operator()(int i, int j) const { return i + j; }
int operator()(int i, int j, int k) const { return i + j + k; }
};
// Take any n-ary expression where the children are all int terminals and sum all the ints
struct sum
: <classname alt="boost::proto::when">proto::when</classname><
// Match any nary expression where the children are all int terminals
<classname alt="boost::proto::nary_expr">proto::nary_expr</classname><<classname alt="boost::proto::_">_</classname>, <classname alt="boost::proto::vararg">proto::vararg</classname><<classname alt="boost::proto::terminal">proto::terminal</classname><int> > >
// Turn the current expression into a pseudo-parameter pack, then expand it,
// extracting the value from each child in turn.
, do_sum(<classname alt="boost::proto::_value">proto::_value</classname>(proto::pack(<classname alt="boost::proto::_">_</classname>))...)
>
{};
int main()
{
<classname alt="boost::proto::terminal">proto::terminal</classname><int>::type i = {42};
int result = sum()( i(3,5) ); // Creates a ternary functional-call expression
std::cout << "Sum of 42, 3, and 5 : " << result << std::endl;
}</programlisting>
</para>
<para>
The above program displays:
</para>
<para>
<computeroutput>Sum of 42, 3, and 5 : 50</computeroutput>
</para>
<para>
In the above example, the type
<computeroutput>
<classname alt="boost::proto::_value">proto::_value</classname>(proto::pack(<classname alt="boost::proto::_">_</classname>))
</computeroutput>
is a so-called <emphasis>unpacking pattern</emphasis>, described below.
</para>
<para>
<emphasis role="bold">Unpacking Patterns:</emphasis>
</para>
<para>
Composite transforms (either <conceptname>CallableTransform</conceptname>s or
<conceptname>ObjectTransform</conceptname>s) usually have the form
<computeroutput>X(A<subscript>0</subscript>,…A<subscript>n</subscript>)</computeroutput>.
However, when the argument list in a composite transform is terminated with a C-style
vararg ellipsis as in <computeroutput>X(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>,
the final argument <computeroutput>A<subscript>n</subscript></computeroutput> is treated
as an <emphasis>unpacking pattern</emphasis>.
</para>
<para>
An unpacking pattern must itself be a composite transform; that is, it must be a
function type representing either a <conceptname>CallableTransform</conceptname> or
an <conceptname>ObjectTransform</conceptname>. The type <computeroutput>proto::pack(_)</computeroutput>
must appear exactly once in the unpacking pattern. This type will receive a substitution
when the unpacking pattern is expanded.
</para>
<para>
A composite transform like <computeroutput>X(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>,
when evaluated against a given expression <replaceable>E</replaceable>, state and data, is evaluated as if it were
<computeroutput>X(A<subscript>0</subscript>,…A<subscript>n-1</subscript>,<replaceable>S</replaceable>)</computeroutput>
where <replaceable>S</replaceable> is a type sequence computed as follows:
</para>
<para>
Let <computeroutput><replaceable>SUB</replaceable>(A,B)</computeroutput> be a type function that replaces every occurence of
<computeroutput>proto::pack(_)</computeroutput> within <computeroutput>A</computeroutput> with <computeroutput>B</computeroutput>.
<itemizedlist>
<listitem>
If the expression <replaceable>E</replaceable> is a terminal (i.e. it has arity 0), <replaceable>S</replaceable>
is the one-element sequence containing <computeroutput><replaceable>SUB</replaceable>(A<subscript>n</subscript>, <classname alt="boost::proto::_value">proto::_value</classname>)</computeroutput>.
</listitem>
<listitem>
If the expression <replaceable>E</replaceable> is a non-terminal, <replaceable>S</replaceable> is the sequence
<computeroutput><replaceable>SUB</replaceable>(A<subscript>n</subscript>, <classname alt="boost::proto::_child_c">proto::_child_c</classname><0>),…
<replaceable>SUB</replaceable>(A<subscript>n</subscript>, <classname alt="boost::proto::_child_c">proto::_child_c</classname><<replaceable>M</replaceable>-1>)</computeroutput>, where
<replaceable>M</replaceable> is the arity of the expression <replaceable>E</replaceable>.
</listitem>
</itemizedlist>
</para>
</description>
</struct>
</namespace>
</namespace>
</header>
|