1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// ratio_test.cpp ----------------------------------------------------------//
// Copyright 2008 Howard Hinnant
// Copyright 2008 Beman Dawes
// Distributed under the Boost Software License, Version 1.0.
// See http://www.boost.org/LICENSE_1_0.txt
#include <iostream>
#include <boost/ratio/ratio.hpp>
#include "duration.hpp"
namespace User1
{
// Example type-safe "physics" code interoperating with chrono::duration types
// and taking advantage of the std::ratio infrastructure and design philosophy.
// length - mimics chrono::duration except restricts representation to double.
// Uses boost::ratio facilities for length units conversions.
template <class Ratio>
class length
{
public:
typedef Ratio ratio;
private:
double len_;
public:
length() : len_(1) {}
length(const double& len) : len_(len) {}
// conversions
template <class R>
length(const length<R>& d)
: len_(d.count() * boost::ratio_divide<Ratio, R>::type::den /
boost::ratio_divide<Ratio, R>::type::num) {}
// observer
double count() const {return len_;}
// arithmetic
length& operator+=(const length& d) {len_ += d.count(); return *this;}
length& operator-=(const length& d) {len_ -= d.count(); return *this;}
length operator+() const {return *this;}
length operator-() const {return length(-len_);}
length& operator*=(double rhs) {len_ *= rhs; return *this;}
length& operator/=(double rhs) {len_ /= rhs; return *this;}
};
// Sparse sampling of length units
typedef length<boost::ratio<1> > meter; // set meter as "unity"
typedef length<boost::centi> centimeter; // 1/100 meter
typedef length<boost::kilo> kilometer; // 1000 meters
typedef length<boost::ratio<254, 10000> > inch; // 254/10000 meters
// length takes ratio instead of two integral types so that definitions can be made like so:
typedef length<boost::ratio_multiply<boost::ratio<12>, inch::ratio>::type> foot; // 12 inchs
typedef length<boost::ratio_multiply<boost::ratio<5280>, foot::ratio>::type> mile; // 5280 feet
// Need a floating point definition of seconds
typedef boost_ex::chrono::duration<double> seconds; // unity
// Demo of (scientific) support for sub-nanosecond resolutions
typedef boost_ex::chrono::duration<double, boost::pico> picosecond; // 10^-12 seconds
typedef boost_ex::chrono::duration<double, boost::femto> femtosecond; // 10^-15 seconds
typedef boost_ex::chrono::duration<double, boost::atto> attosecond; // 10^-18 seconds
// A very brief proof-of-concept for SIUnits-like library
// Hard-wired to floating point seconds and meters, but accepts other units (shown in testUser1())
template <class R1, class R2>
class quantity
{
double q_;
public:
typedef R1 time_dim;
typedef R2 distance_dim;
quantity() : q_(1) {}
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template <>
class quantity<boost::ratio<1>, boost::ratio<0> >
{
double q_;
public:
quantity() : q_(1) {}
quantity(seconds d) : q_(d.count()) {} // note: only User1::seconds needed here
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template <>
class quantity<boost::ratio<0>, boost::ratio<1> >
{
double q_;
public:
quantity() : q_(1) {}
quantity(meter d) : q_(d.count()) {} // note: only User1::meter needed here
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template <>
class quantity<boost::ratio<0>, boost::ratio<0> >
{
double q_;
public:
quantity() : q_(1) {}
quantity(double d) : q_(d) {}
double get() const {return q_;}
void set(double q) {q_ = q;}
};
// Example SI-Units
typedef quantity<boost::ratio<0>, boost::ratio<0> > Scalar;
typedef quantity<boost::ratio<1>, boost::ratio<0> > Time; // second
typedef quantity<boost::ratio<0>, boost::ratio<1> > Distance; // meter
typedef quantity<boost::ratio<-1>, boost::ratio<1> > Speed; // meter/second
typedef quantity<boost::ratio<-2>, boost::ratio<1> > Acceleration; // meter/second^2
template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type>
operator/(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
typedef quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type> R;
R r;
r.set(x.get() / y.get());
return r;
}
template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type>
operator*(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
typedef quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type> R;
R r;
r.set(x.get() * y.get());
return r;
}
template <class R1, class R2>
quantity<R1, R2>
operator+(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
typedef quantity<R1, R2> R;
R r;
r.set(x.get() + y.get());
return r;
}
template <class R1, class R2>
quantity<R1, R2>
operator-(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
typedef quantity<R1, R2> R;
R r;
r.set(x.get() - y.get());
return r;
}
// Example type-safe physics function
Distance
compute_distance(Speed v0, Time t, Acceleration a)
{
return v0 * t + Scalar(.5) * a * t * t; // if a units mistake is made here it won't compile
}
} // User1
// Exercise example type-safe physics function and show interoperation
// of custom time durations (User1::seconds) and standard time durations (std::hours).
// Though input can be arbitrary (but type-safe) units, output is always in SI-units
// (a limitation of the simplified Units lib demoed here).
int main()
{
//~ typedef boost::ratio<8, BOOST_INTMAX_C(0x7FFFFFFFD)> R1;
//~ typedef boost::ratio<3, BOOST_INTMAX_C(0x7FFFFFFFD)> R2;
typedef User1::quantity<boost::ratio_subtract<boost::ratio<0>, boost::ratio<1> >::type,
boost::ratio_subtract<boost::ratio<1>, boost::ratio<0> >::type > RR;
//~ typedef boost::ratio_subtract<R1, R2>::type RS;
//~ std::cout << RS::num << '/' << RS::den << '\n';
std::cout << "*************\n";
std::cout << "* testUser1 *\n";
std::cout << "*************\n";
User1::Distance d(( User1::mile(110) ));
boost_ex::chrono::hours h((2));
User1::Time t(( h ));
//~ boost_ex::chrono::seconds sss=boost_ex::chrono::duration_cast<boost_ex::chrono::seconds>(h);
//~ User1::seconds sss((120));
//~ User1::Time t(( sss ));
//typedef User1::quantity<boost::ratio_subtract<User1::Distance::time_dim, User1::Time::time_dim >::type,
// boost::ratio_subtract<User1::Distance::distance_dim, User1::Time::distance_dim >::type > R;
RR r=d / t;
//r.set(d.get() / t.get());
User1::Speed rc= r;
(void)rc;
User1::Speed s = d / t;
std::cout << "Speed = " << s.get() << " meters/sec\n";
User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time();
std::cout << "Acceleration = " << a.get() << " meters/sec^2\n";
User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a);
std::cout << "Distance = " << df.get() << " meters\n";
std::cout << "There are " << User1::mile::ratio::den << '/' << User1::mile::ratio::num << " miles/meter";
User1::meter mt = 1;
User1::mile mi = mt;
std::cout << " which is approximately " << mi.count() << '\n';
std::cout << "There are " << User1::mile::ratio::num << '/' << User1::mile::ratio::den << " meters/mile";
mi = 1;
mt = mi;
std::cout << " which is approximately " << mt.count() << '\n';
User1::attosecond as(1);
User1::seconds sec = as;
std::cout << "1 attosecond is " << sec.count() << " seconds\n";
std::cout << "sec = as; // compiles\n";
sec = User1::seconds(1);
as = sec;
std::cout << "1 second is " << as.count() << " attoseconds\n";
std::cout << "as = sec; // compiles\n";
std::cout << "\n";
return 0;
}
|