File: si_physics.cpp

package info (click to toggle)
boost1.62 1.62.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (236 lines) | stat: -rw-r--r-- 8,167 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//  ratio_test.cpp  ----------------------------------------------------------//

//  Copyright 2008 Howard Hinnant
//  Copyright 2008 Beman Dawes

//  Distributed under the Boost Software License, Version 1.0.
//  See http://www.boost.org/LICENSE_1_0.txt

#include <iostream>
#include <boost/ratio/ratio.hpp>
#include "duration.hpp"

namespace User1
{
// Example type-safe "physics" code interoperating with chrono::duration types
//  and taking advantage of the std::ratio infrastructure and design philosophy.

// length - mimics chrono::duration except restricts representation to double.
//    Uses boost::ratio facilities for length units conversions.

template <class Ratio>
class length
{
public:
    typedef Ratio ratio;
private:
    double len_;
public:

    length() : len_(1) {}
    length(const double& len) : len_(len) {}

    // conversions
    template <class R>
    length(const length<R>& d)
            : len_(d.count() * boost::ratio_divide<Ratio, R>::type::den /
                               boost::ratio_divide<Ratio, R>::type::num) {}

    // observer

    double count() const {return len_;}

    // arithmetic

    length& operator+=(const length& d) {len_ += d.count(); return *this;}
    length& operator-=(const length& d) {len_ -= d.count(); return *this;}

    length operator+() const {return *this;}
    length operator-() const {return length(-len_);}

    length& operator*=(double rhs) {len_ *= rhs; return *this;}
    length& operator/=(double rhs) {len_ /= rhs; return *this;}
};

// Sparse sampling of length units
typedef length<boost::ratio<1> >          meter;        // set meter as "unity"
typedef length<boost::centi>              centimeter;   // 1/100 meter
typedef length<boost::kilo>               kilometer;    // 1000  meters
typedef length<boost::ratio<254, 10000> > inch;         // 254/10000 meters
// length takes ratio instead of two integral types so that definitions can be made like so:
typedef length<boost::ratio_multiply<boost::ratio<12>, inch::ratio>::type>   foot;  // 12 inchs
typedef length<boost::ratio_multiply<boost::ratio<5280>, foot::ratio>::type> mile;  // 5280 feet

// Need a floating point definition of seconds
typedef boost_ex::chrono::duration<double> seconds;                         // unity
// Demo of (scientific) support for sub-nanosecond resolutions
typedef boost_ex::chrono::duration<double,  boost::pico> picosecond;  // 10^-12 seconds
typedef boost_ex::chrono::duration<double, boost::femto> femtosecond; // 10^-15 seconds
typedef boost_ex::chrono::duration<double,  boost::atto> attosecond;  // 10^-18 seconds

// A very brief proof-of-concept for SIUnits-like library
//  Hard-wired to floating point seconds and meters, but accepts other units (shown in testUser1())
template <class R1, class R2>
class quantity
{
    double q_;
public:
    typedef R1 time_dim;
    typedef R2 distance_dim;
    quantity() : q_(1) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<1>, boost::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(seconds d) : q_(d.count()) {}  // note:  only User1::seconds needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<0>, boost::ratio<1> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(meter d) : q_(d.count()) {}  // note:  only User1::meter needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<0>, boost::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(double d) : q_(d) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

// Example SI-Units
typedef quantity<boost::ratio<0>, boost::ratio<0> >  Scalar;
typedef quantity<boost::ratio<1>, boost::ratio<0> >  Time;         // second
typedef quantity<boost::ratio<0>, boost::ratio<1> >  Distance;     // meter
typedef quantity<boost::ratio<-1>, boost::ratio<1> > Speed;        // meter/second
typedef quantity<boost::ratio<-2>, boost::ratio<1> > Acceleration; // meter/second^2

template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type>
operator/(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type> R;
    R r;
    r.set(x.get() / y.get());
    return r;
}

template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type>
operator*(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type> R;
    R r;
    r.set(x.get() * y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator+(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() + y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator-(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() - y.get());
    return r;
}

// Example type-safe physics function
Distance
compute_distance(Speed v0, Time t, Acceleration a)
{
    return v0 * t + Scalar(.5) * a * t * t;  // if a units mistake is made here it won't compile
}

} // User1

// Exercise example type-safe physics function and show interoperation
// of custom time durations (User1::seconds) and standard time durations (std::hours).
// Though input can be arbitrary (but type-safe) units, output is always in SI-units
//   (a limitation of the simplified Units lib demoed here).



int main()
{
    //~ typedef boost::ratio<8, BOOST_INTMAX_C(0x7FFFFFFFD)> R1;
    //~ typedef boost::ratio<3, BOOST_INTMAX_C(0x7FFFFFFFD)> R2;
    typedef User1::quantity<boost::ratio_subtract<boost::ratio<0>, boost::ratio<1> >::type,
                             boost::ratio_subtract<boost::ratio<1>, boost::ratio<0> >::type > RR;
    //~ typedef boost::ratio_subtract<R1, R2>::type RS;
    //~ std::cout << RS::num << '/' << RS::den << '\n';


    std::cout << "*************\n";
    std::cout << "* testUser1 *\n";
    std::cout << "*************\n";
    User1::Distance d(( User1::mile(110) ));
    boost_ex::chrono::hours h((2));
    User1::Time t(( h ));
    //~ boost_ex::chrono::seconds sss=boost_ex::chrono::duration_cast<boost_ex::chrono::seconds>(h);
    //~ User1::seconds sss((120));
    //~ User1::Time t(( sss ));

    //typedef User1::quantity<boost::ratio_subtract<User1::Distance::time_dim, User1::Time::time_dim >::type,
    //                        boost::ratio_subtract<User1::Distance::distance_dim, User1::Time::distance_dim >::type > R;
    RR r=d / t;
    //r.set(d.get() / t.get());

    User1::Speed rc= r;
    (void)rc;
    User1::Speed s = d / t;
    std::cout << "Speed = " << s.get() << " meters/sec\n";
    User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time();
    std::cout << "Acceleration = " << a.get() << " meters/sec^2\n";
    User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a);
    std::cout << "Distance = " << df.get() << " meters\n";
    std::cout << "There are " << User1::mile::ratio::den << '/' << User1::mile::ratio::num << " miles/meter";
    User1::meter mt = 1;
    User1::mile mi = mt;
    std::cout << " which is approximately " << mi.count() << '\n';
    std::cout << "There are " << User1::mile::ratio::num << '/' << User1::mile::ratio::den << " meters/mile";
    mi = 1;
    mt = mi;
    std::cout << " which is approximately " << mt.count() << '\n';
    User1::attosecond as(1);
    User1::seconds sec = as;
    std::cout << "1 attosecond is " << sec.count() << " seconds\n";
    std::cout << "sec = as;  // compiles\n";
    sec = User1::seconds(1);
    as = sec;
    std::cout << "1 second is " << as.count() << " attoseconds\n";
    std::cout << "as = sec;  // compiles\n";
    std::cout << "\n";
  return 0;
}