File: adjacency_matrix.hpp

package info (click to toggle)
boost1.62 1.62.0+dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (1235 lines) | stat: -rw-r--r-- 45,354 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Copyright 2006 Trustees of Indiana University
// Authors: Jeremy G. Siek and Douglas Gregor <dgregor@cs.indiana.edu>
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================

#ifndef BOOST_ADJACENCY_MATRIX_HPP
#define BOOST_ADJACENCY_MATRIX_HPP

#include <boost/config.hpp>
#include <vector>
#include <memory>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/iterator.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/graph_selectors.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/graph/adjacency_iterator.hpp>
#include <boost/graph/detail/edge.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/filter_iterator.hpp>
#include <boost/range/irange.hpp>
#include <boost/graph/properties.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/property_map/transform_value_property_map.hpp>
#include <boost/property_map/function_property_map.hpp>

namespace boost {

  namespace detail {

    template <class Directed, class Vertex>
    class matrix_edge_desc_impl : public edge_desc_impl<Directed,Vertex>
    {
      typedef edge_desc_impl<Directed,Vertex> Base;
    public:
      matrix_edge_desc_impl() { }
      matrix_edge_desc_impl(bool exists, Vertex s, Vertex d,
                            const void* ep = 0)
        : Base(s, d, ep), m_exists(exists) { }
      bool exists() const { return m_exists; }
    private:
      bool m_exists;
    };

    struct does_edge_exist {
      template <class Edge>
      bool operator()(const Edge& e) const { return e.exists(); }
    };

    // Note to self... The int for get_edge_exists and set_edge exist helps
    // make these calls unambiguous.
    template <typename EdgeProperty>
    bool get_edge_exists(const std::pair<bool, EdgeProperty>& stored_edge, int) {
      return stored_edge.first;
    }
    template <typename EdgeProperty>
    void set_edge_exists(
        std::pair<bool, EdgeProperty>& stored_edge,
        bool flag,
        int
        ) {
      stored_edge.first = flag;
    }

    template <typename EdgeProxy>
    bool get_edge_exists(const EdgeProxy& edge_proxy, ...) {
      return edge_proxy;
    }
    template <typename EdgeProxy>
    EdgeProxy& set_edge_exists(EdgeProxy& edge_proxy, bool flag, ...) {
      edge_proxy = flag;
      return edge_proxy; // just to avoid never used warning
    }


    // NOTE: These functions collide with the get_property function for
    // accessing bundled graph properties. Be excplicit when using them.
    template <typename EdgeProperty>
    const EdgeProperty&
    get_edge_property(const std::pair<bool, EdgeProperty>& stored_edge) {
      return stored_edge.second;
    }
    template <typename EdgeProperty>
    EdgeProperty&
    get_edge_property(std::pair<bool, EdgeProperty>& stored_edge) {
      return stored_edge.second;
    }

    template <typename StoredEdgeProperty, typename EdgeProperty>
    inline void
    set_edge_property(std::pair<bool, StoredEdgeProperty>& stored_edge,
                      const EdgeProperty& ep, int) {
      stored_edge.second = ep;
    }

    inline const no_property& get_edge_property(const char&) {
      static no_property s_prop;
      return s_prop;
    }
    inline no_property& get_edge_property(char&) {
      static no_property s_prop;
      return s_prop;
    }
    template <typename EdgeProxy, typename EdgeProperty>
    inline void set_edge_property(EdgeProxy, const EdgeProperty&, ...) {}

    //=======================================================================
    // Directed Out Edge Iterator

    template <
        typename VertexDescriptor, typename MatrixIter
      , typename VerticesSizeType, typename EdgeDescriptor
    >
    struct dir_adj_matrix_out_edge_iter
      : iterator_adaptor<
            dir_adj_matrix_out_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        >
    {
        typedef iterator_adaptor<
            dir_adj_matrix_out_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        > super_t;

        dir_adj_matrix_out_edge_iter() { }

        dir_adj_matrix_out_edge_iter(
            const MatrixIter& i
          , const VertexDescriptor& src
          , const VerticesSizeType& n
           )
            : super_t(i), m_src(src), m_targ(0), m_n(n)
        { }

        void increment() {
            ++this->base_reference();
            ++m_targ;
        }

        inline EdgeDescriptor
        dereference() const
        {
            return EdgeDescriptor(get_edge_exists(*this->base(), 0),
                                  m_src, m_targ,
                                  &get_edge_property(*this->base()));
        }
        VertexDescriptor m_src, m_targ;
        VerticesSizeType m_n;
    };

    //=======================================================================
    // Directed In Edge Iterator

    template <
        typename VertexDescriptor, typename MatrixIter
      , typename VerticesSizeType, typename EdgeDescriptor
    >
    struct dir_adj_matrix_in_edge_iter
      : iterator_adaptor<
            dir_adj_matrix_in_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        >
    {
        typedef iterator_adaptor<
            dir_adj_matrix_in_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        > super_t;

        dir_adj_matrix_in_edge_iter() { }

        dir_adj_matrix_in_edge_iter(
            const MatrixIter& i
          , const MatrixIter& last
          , const VertexDescriptor& tgt
          , const VerticesSizeType& n
           )
          : super_t(i), m_last(last), m_src(0), m_targ(tgt), m_n(n)
        { }

        void increment() {
          if (VerticesSizeType(m_last - this->base_reference()) >= m_n) {
            this->base_reference() += m_n;
            ++m_src;
          } else {
            this->base_reference() = m_last;
          }
        }

        inline EdgeDescriptor
        dereference() const
        {
            return EdgeDescriptor(get_edge_exists(*this->base(), 0),
                                  m_src, m_targ,
                                  &get_edge_property(*this->base()));
        }
        MatrixIter m_last;
        VertexDescriptor m_src, m_targ;
        VerticesSizeType m_n;
    };

    //=======================================================================
    // Undirected Out Edge Iterator

    template <
        typename VertexDescriptor, typename MatrixIter
      , typename VerticesSizeType, typename EdgeDescriptor
    >
    struct undir_adj_matrix_out_edge_iter
      : iterator_adaptor<
            undir_adj_matrix_out_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        >
    {
        typedef iterator_adaptor<
            undir_adj_matrix_out_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        > super_t;

        undir_adj_matrix_out_edge_iter() { }

        undir_adj_matrix_out_edge_iter(
            const MatrixIter& i
          , const VertexDescriptor& src
          , const VerticesSizeType& n
        )
          : super_t(i), m_src(src), m_inc(src), m_targ(0), m_n(n)
        {}

        void increment()
        {
            if (m_targ < m_src)     // first half
            {
                ++this->base_reference();
            }
            else if (m_targ < m_n - 1)
            {                  // second half
                ++m_inc;
                this->base_reference() += m_inc;
            }
            else
            {                  // past-the-end
                this->base_reference() += m_n - m_src;
            }
            ++m_targ;
        }

        inline EdgeDescriptor
        dereference() const
        {
            return EdgeDescriptor(get_edge_exists(*this->base(), 0),
                                  m_src, m_targ,
                                  &get_edge_property(*this->base()));
        }

        VertexDescriptor m_src, m_inc, m_targ;
        VerticesSizeType m_n;
    };

    //=======================================================================
    // Undirected In Edge Iterator

    template <
        typename VertexDescriptor, typename MatrixIter
      , typename VerticesSizeType, typename EdgeDescriptor
    >
    struct undir_adj_matrix_in_edge_iter
      : iterator_adaptor<
            undir_adj_matrix_in_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        >
    {
        typedef iterator_adaptor<
            undir_adj_matrix_in_edge_iter<VertexDescriptor, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        > super_t;

        undir_adj_matrix_in_edge_iter() { }

        undir_adj_matrix_in_edge_iter(
            const MatrixIter& i
          , const VertexDescriptor& src
          , const VerticesSizeType& n
        )
          : super_t(i), m_src(src), m_inc(src), m_targ(0), m_n(n)
        {}

        void increment()
        {
            if (m_targ < m_src)     // first half
            {
                ++this->base_reference();
            }
            else if (m_targ < m_n - 1)
            {                  // second half
                ++m_inc;
                this->base_reference() += m_inc;
            }
            else
            {                  // past-the-end
                this->base_reference() += m_n - m_src;
            }
            ++m_targ;
        }

        inline EdgeDescriptor
        dereference() const
        {
            return EdgeDescriptor(get_edge_exists(*this->base(), 0),
                                  m_targ, m_src,
                                  &get_edge_property(*this->base()));
        }

        VertexDescriptor m_src, m_inc, m_targ;
        VerticesSizeType m_n;
    };

    //=======================================================================
    // Edge Iterator

    template <typename Directed, typename MatrixIter,
              typename VerticesSizeType, typename EdgeDescriptor>
    struct adj_matrix_edge_iter
      : iterator_adaptor<
            adj_matrix_edge_iter<Directed, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        >
    {
        typedef iterator_adaptor<
            adj_matrix_edge_iter<Directed, MatrixIter,  VerticesSizeType, EdgeDescriptor>
          , MatrixIter
          , EdgeDescriptor
          , use_default
          , EdgeDescriptor
          , std::ptrdiff_t
        > super_t;

        adj_matrix_edge_iter() { }

        adj_matrix_edge_iter(const MatrixIter& i, const MatrixIter& start, const VerticesSizeType& n)
            : super_t(i), m_start(start), m_src(0), m_targ(0), m_n(n) { }

        void increment()
        {
            increment_dispatch(this->base_reference(), Directed());
        }

        void increment_dispatch(MatrixIter& i, directedS)
        {
            ++i;
            if (m_targ == m_n - 1)
            {
                m_targ = 0;
                ++m_src;
            }
            else
            {
                ++m_targ;
            }
        }

        void increment_dispatch(MatrixIter& i, undirectedS)
        {
            ++i;
            if (m_targ == m_src)
            {
                m_targ = 0;
                ++m_src;
            }
            else
            {
                ++m_targ;
            }
        }

        inline EdgeDescriptor
        dereference() const
        {
            return EdgeDescriptor(get_edge_exists(*this->base(), 0),
                                  m_src, m_targ,
                                  &get_edge_property(*this->base()));
        }

        MatrixIter m_start;
        VerticesSizeType m_src, m_targ, m_n;
    };

  } // namespace detail

  //=========================================================================
  // Adjacency Matrix Traits
  template <typename Directed = directedS>
  class adjacency_matrix_traits {
    typedef typename Directed::is_directed_t is_directed;
  public:
    // The bidirectionalS tag is not allowed with the adjacency_matrix
    // graph type. Instead, use directedS, which also provides the
    // functionality required for a Bidirectional Graph (in_edges,
    // in_degree, etc.).
    BOOST_STATIC_ASSERT(!(is_same<Directed, bidirectionalS>::value));

    typedef typename mpl::if_<is_directed,
                                    bidirectional_tag, undirected_tag>::type
      directed_category;

    typedef disallow_parallel_edge_tag edge_parallel_category;

    typedef std::size_t vertex_descriptor;

    typedef detail::matrix_edge_desc_impl<directed_category,
      vertex_descriptor> edge_descriptor;
  };

  struct adjacency_matrix_class_tag { };

  struct adj_matrix_traversal_tag :
    public virtual adjacency_matrix_tag,
    public virtual vertex_list_graph_tag,
    public virtual incidence_graph_tag,
    public virtual adjacency_graph_tag,
    public virtual edge_list_graph_tag { };

  //=========================================================================
  // Adjacency Matrix Class
  template <typename Directed = directedS,
            typename VertexProperty = no_property,
            typename EdgeProperty = no_property,
            typename GraphProperty = no_property,
            typename Allocator = std::allocator<bool> >
  class adjacency_matrix {
    typedef adjacency_matrix self;
    typedef adjacency_matrix_traits<Directed> Traits;

  public:
    // The bidirectionalS tag is not allowed with the adjacency_matrix
    // graph type. Instead, use directedS, which also provides the
    // functionality required for a Bidirectional Graph (in_edges,
    // in_degree, etc.).
    BOOST_STATIC_ASSERT(!(is_same<Directed, bidirectionalS>::value));

    typedef GraphProperty graph_property_type;
    typedef typename lookup_one_property<GraphProperty, graph_bundle_t>::type graph_bundled;

    typedef VertexProperty vertex_property_type;
    typedef typename lookup_one_property<VertexProperty, vertex_bundle_t>::type vertex_bundled;

    typedef EdgeProperty edge_property_type;
    typedef typename lookup_one_property<EdgeProperty, edge_bundle_t>::type edge_bundled;

  public: // should be private
    typedef typename mpl::if_<typename has_property<edge_property_type>::type,
      std::pair<bool, edge_property_type>, char>::type StoredEdge;
#if defined(BOOST_NO_STD_ALLOCATOR)
    typedef std::vector<StoredEdge> Matrix;
#else
    typedef typename Allocator::template rebind<StoredEdge>::other Alloc;
    typedef std::vector<StoredEdge, Alloc> Matrix;
#endif
    typedef typename Matrix::iterator MatrixIter;
    typedef typename Matrix::size_type size_type;
  public:
    // Graph concept required types
    typedef typename Traits::vertex_descriptor vertex_descriptor;
    typedef typename Traits::edge_descriptor edge_descriptor;
    typedef typename Traits::directed_category directed_category;
    typedef typename Traits::edge_parallel_category edge_parallel_category;
    typedef adj_matrix_traversal_tag traversal_category;

    static vertex_descriptor null_vertex()
    {
      return (std::numeric_limits<vertex_descriptor>::max)();
    }

    //private: if friends worked, these would be private

    typedef detail::dir_adj_matrix_out_edge_iter<
        vertex_descriptor, MatrixIter, size_type, edge_descriptor
    > DirOutEdgeIter;

    typedef detail::undir_adj_matrix_out_edge_iter<
        vertex_descriptor, MatrixIter, size_type, edge_descriptor
    > UnDirOutEdgeIter;

    typedef typename mpl::if_<
        typename Directed::is_directed_t, DirOutEdgeIter, UnDirOutEdgeIter
    >::type unfiltered_out_edge_iter;

    typedef detail::dir_adj_matrix_in_edge_iter<
        vertex_descriptor, MatrixIter, size_type, edge_descriptor
    > DirInEdgeIter;

    typedef detail::undir_adj_matrix_in_edge_iter<
        vertex_descriptor, MatrixIter, size_type, edge_descriptor
    > UnDirInEdgeIter;

    typedef typename mpl::if_<
        typename Directed::is_directed_t, DirInEdgeIter, UnDirInEdgeIter
    >::type unfiltered_in_edge_iter;

    typedef detail::adj_matrix_edge_iter<
        Directed, MatrixIter, size_type, edge_descriptor
    > unfiltered_edge_iter;

  public:

    // IncidenceGraph concept required types
    typedef filter_iterator<detail::does_edge_exist, unfiltered_out_edge_iter>
      out_edge_iterator;

    typedef size_type degree_size_type;

    // BidirectionalGraph required types
    typedef filter_iterator<detail::does_edge_exist, unfiltered_in_edge_iter>
      in_edge_iterator;

    // AdjacencyGraph required types
     typedef typename adjacency_iterator_generator<self,
       vertex_descriptor, out_edge_iterator>::type adjacency_iterator;

    // VertexListGraph required types
    typedef size_type vertices_size_type;
    typedef integer_range<vertex_descriptor> VertexList;
    typedef typename VertexList::iterator vertex_iterator;

    // EdgeListGraph required types
    typedef size_type edges_size_type;
    typedef filter_iterator<
        detail::does_edge_exist, unfiltered_edge_iter
    > edge_iterator;

    // PropertyGraph required types
    typedef adjacency_matrix_class_tag graph_tag;

    // Constructor required by MutableGraph
    adjacency_matrix(vertices_size_type n_vertices,
                     const GraphProperty& p = GraphProperty())
      : m_matrix(Directed::is_directed ?
                 (n_vertices * n_vertices)
                 : (n_vertices * (n_vertices + 1) / 2)),
      m_vertex_set(0, n_vertices),
      m_vertex_properties(n_vertices),
      m_num_edges(0),
      m_property(p) { }

    template <typename EdgeIterator>
    adjacency_matrix(EdgeIterator first,
                     EdgeIterator last,
                     vertices_size_type n_vertices,
                     const GraphProperty& p = GraphProperty())
      : m_matrix(Directed::is_directed ?
                 (n_vertices * n_vertices)
                 : (n_vertices * (n_vertices + 1) / 2)),
      m_vertex_set(0, n_vertices),
      m_vertex_properties(n_vertices),
      m_num_edges(0),
      m_property(p)
    {
      for (; first != last; ++first) {
        add_edge(first->first, first->second, *this);
      }
    }

    template <typename EdgeIterator, typename EdgePropertyIterator>
    adjacency_matrix(EdgeIterator first,
                     EdgeIterator last,
                     EdgePropertyIterator ep_iter,
                     vertices_size_type n_vertices,
                     const GraphProperty& p = GraphProperty())
      : m_matrix(Directed::is_directed ?
                 (n_vertices * n_vertices)
                 : (n_vertices * (n_vertices + 1) / 2)),
      m_vertex_set(0, n_vertices),
      m_vertex_properties(n_vertices),
      m_num_edges(0),
      m_property(p)
    {
      for (; first != last; ++first, ++ep_iter) {
        add_edge(first->first, first->second, *ep_iter, *this);
      }
    }

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
    // Directly access a vertex or edge bundle
    vertex_bundled& operator[](vertex_descriptor v)
    { return get(vertex_bundle, *this, v); }

    const vertex_bundled& operator[](vertex_descriptor v) const
    { return get(vertex_bundle, *this, v); }

    edge_bundled& operator[](edge_descriptor e)
    { return get(edge_bundle, *this, e); }

    const edge_bundled& operator[](edge_descriptor e) const
    { return get(edge_bundle, *this, e); }

    graph_bundled& operator[](graph_bundle_t)
    { return get_property(*this); }

    const graph_bundled& operator[](graph_bundle_t) const
    { return get_property(*this); }
#endif

    //private: if friends worked, these would be private

    typename Matrix::const_reference
    get_edge(vertex_descriptor u, vertex_descriptor v) const {
      if (Directed::is_directed)
        return m_matrix[u * m_vertex_set.size() + v];
      else {
        if (v > u)
          std::swap(u, v);
        return m_matrix[u * (u + 1)/2 + v];
      }
    }
    typename Matrix::reference
    get_edge(vertex_descriptor u, vertex_descriptor v) {
      if (Directed::is_directed)
        return m_matrix[u * m_vertex_set.size() + v];
      else {
        if (v > u)
          std::swap(u, v);
        return m_matrix[u * (u + 1)/2 + v];
      }
    }

    Matrix m_matrix;
    VertexList m_vertex_set;
    std::vector<vertex_property_type> m_vertex_properties;
    size_type m_num_edges;
    graph_property_type m_property;
  };

  //=========================================================================
  // Functions required by the AdjacencyMatrix concept

  template <typename D, typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor,
            bool>
  edge(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
       typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor v,
       const adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    bool exists = detail::get_edge_exists(g.get_edge(u,v), 0);
    typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor
      e(exists, u, v, &detail::get_edge_property(g.get_edge(u,v)));
    return std::make_pair(e, exists);
  }

  //=========================================================================
  // Functions required by the IncidenceGraph concept

  // O(1)
  template <typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<directedS,VP,EP,GP,A>::out_edge_iterator,
            typename adjacency_matrix<directedS,VP,EP,GP,A>::out_edge_iterator>
  out_edges
    (typename adjacency_matrix<directedS,VP,EP,GP,A>::vertex_descriptor u,
     const adjacency_matrix<directedS,VP,EP,GP,A>& g_)
  {
    typedef adjacency_matrix<directedS,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);
    typename Graph::vertices_size_type offset = u * g.m_vertex_set.size();
    typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
    typename Graph::MatrixIter l = f + g.m_vertex_set.size();
    typename Graph::unfiltered_out_edge_iter
          first(f, u, g.m_vertex_set.size())
        , last(l, u, g.m_vertex_set.size());
    detail::does_edge_exist pred;
    typedef typename Graph::out_edge_iterator out_edge_iterator;
    return std::make_pair(out_edge_iterator(pred, first, last),
                          out_edge_iterator(pred, last, last));
  }

  // O(1)
  template <typename VP, typename EP, typename GP, typename A>
  std::pair<
    typename adjacency_matrix<undirectedS,VP,EP,GP,A>::out_edge_iterator,
    typename adjacency_matrix<undirectedS,VP,EP,GP,A>::out_edge_iterator>
  out_edges
    (typename adjacency_matrix<undirectedS,VP,EP,GP,A>::vertex_descriptor u,
     const adjacency_matrix<undirectedS,VP,EP,GP,A>& g_)
  {
    typedef adjacency_matrix<undirectedS,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);
    typename Graph::vertices_size_type offset = u * (u + 1) / 2;
    typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
    typename Graph::MatrixIter l = g.m_matrix.end();

    typename Graph::unfiltered_out_edge_iter
        first(f, u, g.m_vertex_set.size())
      , last(l, u, g.m_vertex_set.size());

    detail::does_edge_exist pred;
    typedef typename Graph::out_edge_iterator out_edge_iterator;
    return std::make_pair(out_edge_iterator(pred, first, last),
                          out_edge_iterator(pred, last, last));
  }

  // O(N)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D,VP,EP,GP,A>::degree_size_type
  out_degree(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
             const adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    typename adjacency_matrix<D,VP,EP,GP,A>::degree_size_type n = 0;
    typename adjacency_matrix<D,VP,EP,GP,A>::out_edge_iterator f, l;
    for (boost::tie(f, l) = out_edges(u, g); f != l; ++f)
      ++n;
    return n;
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A,
    typename Dir, typename Vertex>
  typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor
  source(const detail::matrix_edge_desc_impl<Dir,Vertex>& e,
         const adjacency_matrix<D,VP,EP,GP,A>&)
  {
    return e.m_source;
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A,
    typename Dir, typename Vertex>
  typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor
  target(const detail::matrix_edge_desc_impl<Dir,Vertex>& e,
         const adjacency_matrix<D,VP,EP,GP,A>&)
  {
    return e.m_target;
  }

  //=========================================================================
  // Functions required by the BidirectionalGraph concept

  // O(1)
  template <typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<directedS,VP,EP,GP,A>::in_edge_iterator,
            typename adjacency_matrix<directedS,VP,EP,GP,A>::in_edge_iterator>
  in_edges
    (typename adjacency_matrix<directedS,VP,EP,GP,A>::vertex_descriptor u,
     const adjacency_matrix<directedS,VP,EP,GP,A>& g_)
  {
    typedef adjacency_matrix<directedS,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);
    typename Graph::MatrixIter f = g.m_matrix.begin() + u;
    typename Graph::MatrixIter l = g.m_matrix.end();
    typename Graph::unfiltered_in_edge_iter
        first(f, l, u, g.m_vertex_set.size())
      , last(l, l, u, g.m_vertex_set.size());
    detail::does_edge_exist pred;
    typedef typename Graph::in_edge_iterator in_edge_iterator;
    return std::make_pair(in_edge_iterator(pred, first, last),
                          in_edge_iterator(pred, last, last));
  }

  // O(1)
  template <typename VP, typename EP, typename GP, typename A>
  std::pair<
    typename adjacency_matrix<undirectedS,VP,EP,GP,A>::in_edge_iterator,
    typename adjacency_matrix<undirectedS,VP,EP,GP,A>::in_edge_iterator>
  in_edges
    (typename adjacency_matrix<undirectedS,VP,EP,GP,A>::vertex_descriptor u,
     const adjacency_matrix<undirectedS,VP,EP,GP,A>& g_)
  {
    typedef adjacency_matrix<undirectedS,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);
    typename Graph::vertices_size_type offset = u * (u + 1) / 2;
    typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
    typename Graph::MatrixIter l = g.m_matrix.end();

    typename Graph::unfiltered_in_edge_iter
        first(f, u, g.m_vertex_set.size())
      , last(l, u, g.m_vertex_set.size());

    detail::does_edge_exist pred;
    typedef typename Graph::in_edge_iterator in_edge_iterator;
    return std::make_pair(in_edge_iterator(pred, first, last),
                          in_edge_iterator(pred, last, last));
  }

  // O(N)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D,VP,EP,GP,A>::degree_size_type
  in_degree(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
             const adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    typename adjacency_matrix<D,VP,EP,GP,A>::degree_size_type n = 0;
    typename adjacency_matrix<D,VP,EP,GP,A>::in_edge_iterator f, l;
    for (boost::tie(f, l) = in_edges(u, g); f != l; ++f)
      ++n;
    return n;
  }

  //=========================================================================
  // Functions required by the AdjacencyGraph concept

  template <typename D, typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::adjacency_iterator,
            typename adjacency_matrix<D,VP,EP,GP,A>::adjacency_iterator>
  adjacent_vertices
    (typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
     const adjacency_matrix<D,VP,EP,GP,A>& g_)
  {
      typedef adjacency_matrix<D,VP,EP,GP,A> Graph;
      const Graph& cg = static_cast<const Graph&>(g_);
      Graph& g = const_cast<Graph&>(cg);
      typedef typename Graph::adjacency_iterator adjacency_iterator;
      typename Graph::out_edge_iterator first, last;
      boost::tie(first, last) = out_edges(u, g);
      return std::make_pair(adjacency_iterator(first, &g),
                            adjacency_iterator(last, &g));
  }

  //=========================================================================
  // Functions required by the VertexListGraph concept

  template <typename D, typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::vertex_iterator,
            typename adjacency_matrix<D,VP,EP,GP,A>::vertex_iterator>
  vertices(const adjacency_matrix<D,VP,EP,GP,A>& g_) {
    typedef adjacency_matrix<D,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);
    return std::make_pair(g.m_vertex_set.begin(), g.m_vertex_set.end());
  }

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D,VP,EP,GP,A>::vertices_size_type
  num_vertices(const adjacency_matrix<D,VP,EP,GP,A>& g) {
    return g.m_vertex_set.size();
  }

  //=========================================================================
  // Functions required by the EdgeListGraph concept

  template <typename D, typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::edge_iterator,
            typename adjacency_matrix<D,VP,EP,GP,A>::edge_iterator>
  edges(const adjacency_matrix<D,VP,EP,GP,A>& g_)
  {
    typedef adjacency_matrix<D,VP,EP,GP,A> Graph;
    Graph& g = const_cast<Graph&>(g_);

    typename Graph::unfiltered_edge_iter
      first(g.m_matrix.begin(), g.m_matrix.begin(),
                                    g.m_vertex_set.size()),
      last(g.m_matrix.end(), g.m_matrix.begin(),
                                    g.m_vertex_set.size());
    detail::does_edge_exist pred;
    typedef typename Graph::edge_iterator edge_iterator;
    return std::make_pair(edge_iterator(pred, first, last),
                          edge_iterator(pred, last, last));
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D,VP,EP,GP,A>::edges_size_type
  num_edges(const adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    return g.m_num_edges;
  }

  //=========================================================================
  // Functions required by the MutableGraph concept

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename EP2>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor, bool>
  add_edge(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
           typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor v,
           const EP2& ep,
           adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    typedef typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor
      edge_descriptor;
    if (detail::get_edge_exists(g.get_edge(u,v), 0) == false) {
      ++(g.m_num_edges);
      detail::set_edge_property(g.get_edge(u,v), EP(ep), 0);
      detail::set_edge_exists(g.get_edge(u,v), true, 0);
      return std::make_pair
        (edge_descriptor(true, u, v, &detail::get_edge_property(g.get_edge(u,v))),
         true);
    } else
      return std::make_pair
        (edge_descriptor(true, u, v, &detail::get_edge_property(g.get_edge(u,v))),
         false);
  }
  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  std::pair<typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor, bool>
  add_edge(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
           typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor v,
           adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    EP ep;
    return add_edge(u, v, ep, g);
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  void
  remove_edge(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor u,
              typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor v,
              adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    // Don'remove the edge unless it already exists.
    if(detail::get_edge_exists(g.get_edge(u,v), 0)) {
      --(g.m_num_edges);
      detail::set_edge_exists(g.get_edge(u,v), false, 0);
    }
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A>
  void
  remove_edge(typename adjacency_matrix<D,VP,EP,GP,A>::edge_descriptor e,
              adjacency_matrix<D,VP,EP,GP,A>& g)
  {
    remove_edge(source(e, g), target(e, g), g);
  }


  template <typename D, typename VP, typename EP, typename GP, typename A>
  inline typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor
  add_vertex(adjacency_matrix<D,VP,EP,GP,A>& g) {
    // UNDER CONSTRUCTION
    BOOST_ASSERT(false);
    return *vertices(g).first;
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename VP2>
  inline typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor
  add_vertex(const VP2& /*vp*/, adjacency_matrix<D,VP,EP,GP,A>& g) {
    // UNDER CONSTRUCTION
    BOOST_ASSERT(false);
    return *vertices(g).first;
  }

  template <typename D, typename VP, typename EP, typename GP, typename A>
  inline void
  remove_vertex(typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor /*u*/,
                adjacency_matrix<D,VP,EP,GP,A>& /*g*/)
  {
    // UNDER CONSTRUCTION
    BOOST_ASSERT(false);
  }

  // O(V)
  template <typename VP, typename EP, typename GP, typename A>
  void
  clear_vertex
    (typename adjacency_matrix<directedS,VP,EP,GP,A>::vertex_descriptor u,
     adjacency_matrix<directedS,VP,EP,GP,A>& g)
  {
    typename adjacency_matrix<directedS,VP,EP,GP,A>::vertex_iterator
      vi, vi_end;
    for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
      remove_edge(u, *vi, g);
    for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
      remove_edge(*vi, u, g);
  }

  // O(V)
  template <typename VP, typename EP, typename GP, typename A>
  void
  clear_vertex
    (typename adjacency_matrix<undirectedS,VP,EP,GP,A>::vertex_descriptor u,
     adjacency_matrix<undirectedS,VP,EP,GP,A>& g)
  {
    typename adjacency_matrix<undirectedS,VP,EP,GP,A>::vertex_iterator
      vi, vi_end;
    for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
      remove_edge(u, *vi, g);
  }

  //=========================================================================
  // Functions required by the PropertyGraph concept

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Prop, typename Kind>
  struct adj_mat_pm_helper;

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Prop>
  struct adj_mat_pm_helper<D, VP, EP, GP, A, Prop, vertex_property_tag> {
    typedef typename graph_traits<adjacency_matrix<D, VP, EP, GP, A> >::vertex_descriptor arg_type;
    typedef typed_identity_property_map<arg_type> vi_map_type;
    typedef iterator_property_map<typename std::vector<VP>::iterator, vi_map_type> all_map_type;
    typedef iterator_property_map<typename std::vector<VP>::const_iterator, vi_map_type> all_map_const_type;
    typedef transform_value_property_map<
              detail::lookup_one_property_f<VP, Prop>,
              all_map_type>
      type;
    typedef transform_value_property_map<
              detail::lookup_one_property_f<const VP, Prop>,
              all_map_const_type>
      const_type;
    typedef typename property_traits<type>::reference single_nonconst_type;
    typedef typename property_traits<const_type>::reference single_const_type;

    static type get_nonconst(adjacency_matrix<D, VP, EP, GP, A>& g, Prop prop) {
      return type(prop, all_map_type(g.m_vertex_properties.begin(), vi_map_type()));
    }

    static const_type get_const(const adjacency_matrix<D, VP, EP, GP, A>& g, Prop prop) {
      return const_type(prop, all_map_const_type(g.m_vertex_properties.begin(), vi_map_type()));
    }

    static single_nonconst_type get_nonconst_one(adjacency_matrix<D, VP, EP, GP, A>& g, Prop prop, arg_type v) {
      return lookup_one_property<VP, Prop>::lookup(g.m_vertex_properties[v], prop);
    }

    static single_const_type get_const_one(const adjacency_matrix<D, VP, EP, GP, A>& g, Prop prop, arg_type v) {
      return lookup_one_property<const VP, Prop>::lookup(g.m_vertex_properties[v], prop);
    }
  };

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  struct adj_mat_pm_helper<D, VP, EP, GP, A, Tag, edge_property_tag> {
    typedef typename graph_traits<adjacency_matrix<D, VP, EP, GP, A> >::edge_descriptor edge_descriptor;

    template <typename IsConst>
    struct lookup_property_from_edge {
      Tag tag;
      lookup_property_from_edge(Tag tag): tag(tag) {}
      typedef typename boost::mpl::if_<IsConst, const EP, EP>::type ep_type_nonref;
      typedef ep_type_nonref& ep_type;
      typedef typename lookup_one_property<ep_type_nonref, Tag>::type& result_type;
      result_type operator()(edge_descriptor e) const {
        return lookup_one_property<ep_type_nonref, Tag>::lookup(*static_cast<ep_type_nonref*>(e.get_property()), tag);
      }
    };

    typedef function_property_map<
              lookup_property_from_edge<boost::mpl::false_>,
              typename graph_traits<adjacency_matrix<D, VP, EP, GP, A> >::edge_descriptor> type;
    typedef function_property_map<
              lookup_property_from_edge<boost::mpl::true_>,
              typename graph_traits<adjacency_matrix<D, VP, EP, GP, A> >::edge_descriptor> const_type;
    typedef edge_descriptor arg_type;
    typedef typename lookup_property_from_edge<boost::mpl::false_>::result_type single_nonconst_type;
    typedef typename lookup_property_from_edge<boost::mpl::true_>::result_type single_const_type;

    static type get_nonconst(adjacency_matrix<D, VP, EP, GP, A>& g, Tag tag) {
      return type(tag);
    }

    static const_type get_const(const adjacency_matrix<D, VP, EP, GP, A>& g, Tag tag) {
      return const_type(tag);
    }

    static single_nonconst_type get_nonconst_one(adjacency_matrix<D, VP, EP, GP, A>& g, Tag tag, edge_descriptor e) {
      return lookup_one_property<EP, Tag>::lookup(*static_cast<EP*>(e.get_property()), tag);
    }

    static single_const_type get_const_one(const adjacency_matrix<D, VP, EP, GP, A>& g, Tag tag, edge_descriptor e) {
      return lookup_one_property<const EP, Tag>::lookup(*static_cast<const EP*>(e.get_property()), tag);
    }
  };

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  struct property_map<adjacency_matrix<D,VP,EP,GP,A>, Tag>
    : adj_mat_pm_helper<D, VP, EP, GP, A, Tag,
                        typename detail::property_kind_from_graph<adjacency_matrix<D, VP, EP, GP, A>, Tag>::type> {};

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::type
  get(Tag tag, adjacency_matrix<D, VP, EP, GP, A>& g) {
    return property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::get_nonconst(g, tag);
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::const_type
  get(Tag tag, const adjacency_matrix<D, VP, EP, GP, A>& g) {
    return property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::get_const(g, tag);
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::single_nonconst_type
  get(Tag tag, adjacency_matrix<D, VP, EP, GP, A>& g, typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::arg_type a) {
    return property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::get_nonconst_one(g, tag, a);
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::single_const_type
  get(Tag tag, const adjacency_matrix<D, VP, EP, GP, A>& g, typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::arg_type a) {
    return property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::get_const_one(g, tag, a);
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  void
  put(Tag tag,
      adjacency_matrix<D, VP, EP, GP, A>& g,
      typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::arg_type a,
      typename property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::single_const_type val) {
    property_map<adjacency_matrix<D, VP, EP, GP, A>, Tag>::get_nonconst_one(g, tag, a) = val;
  }

  // O(1)
  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag, typename Value>
  inline void
  set_property(adjacency_matrix<D,VP,EP,GP,A>& g, Tag tag, const Value& value)
  {
      get_property_value(g.m_property, tag) = value;
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  inline typename graph_property<adjacency_matrix<D,VP,EP,GP,A>, Tag>::type&
  get_property(adjacency_matrix<D,VP,EP,GP,A>& g, Tag tag)
  {
      return get_property_value(g.m_property, tag);
  }

  template <typename D, typename VP, typename EP, typename GP, typename A,
            typename Tag>
  inline const typename graph_property<adjacency_matrix<D,VP,EP,GP,A>, Tag>::type&
  get_property(const adjacency_matrix<D,VP,EP,GP,A>& g, Tag tag)
  {
      return get_property_value(g.m_property, tag);
  }

  //=========================================================================
  // Vertex Property Map

  template <typename D, typename VP, typename EP, typename GP, typename A>
  struct property_map<adjacency_matrix<D, VP, EP, GP, A>, vertex_index_t> {
    typedef typename adjacency_matrix<D, VP, EP, GP, A>::vertex_descriptor Vertex;
    typedef typed_identity_property_map<Vertex> type;
    typedef type const_type;
  };

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, vertex_index_t>::const_type
  get(vertex_index_t, adjacency_matrix<D, VP, EP, GP, A>&) {
    return typename property_map<adjacency_matrix<D, VP, EP, GP, A>, vertex_index_t>::const_type();
  }

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D, VP, EP, GP, A>::vertex_descriptor
  get(vertex_index_t,
      adjacency_matrix<D, VP, EP, GP, A>&,
      typename adjacency_matrix<D, VP, EP, GP, A>::vertex_descriptor v) {
    return v;
  }

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename property_map<adjacency_matrix<D, VP, EP, GP, A>, vertex_index_t>::const_type
  get(vertex_index_t, const adjacency_matrix<D, VP, EP, GP, A>&) {
    return typename property_map<adjacency_matrix<D, VP, EP, GP, A>, vertex_index_t>::const_type();
  }

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D, VP, EP, GP, A>::vertex_descriptor
  get(vertex_index_t,
      const adjacency_matrix<D, VP, EP, GP, A>&,
      typename adjacency_matrix<D, VP, EP, GP, A>::vertex_descriptor v) {
    return v;
  }

  //=========================================================================
  // Other Functions

  template <typename D, typename VP, typename EP, typename GP, typename A>
  typename adjacency_matrix<D,VP,EP,GP,A>::vertex_descriptor
  vertex(typename adjacency_matrix<D,VP,EP,GP,A>::vertices_size_type n,
         const adjacency_matrix<D,VP,EP,GP,A>&)
  {
    return n;
  }

template <typename D, typename VP, typename EP, typename GP, typename A>
struct graph_mutability_traits<adjacency_matrix<D, VP, EP, GP, A> > {
  typedef mutable_edge_property_graph_tag category;
};


} // namespace boost

#endif // BOOST_ADJACENCY_MATRIX_HPP