File: bc_clustering.hpp

package info (click to toggle)
boost1.62 1.62.0+dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (164 lines) | stat: -rw-r--r-- 5,864 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright 2004 The Trustees of Indiana University.

// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine
#ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
#define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP

#include <boost/graph/betweenness_centrality.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <algorithm>
#include <vector>
#include <boost/property_map/property_map.hpp>

namespace boost {

/** Threshold termination function for the betweenness centrality
 * clustering algorithm.
 */
template<typename T>
struct bc_clustering_threshold
{
  typedef T centrality_type;

  /// Terminate clustering when maximum absolute edge centrality is
  /// below the given threshold.
  explicit bc_clustering_threshold(T threshold) 
    : threshold(threshold), dividend(1.0) {}
  
  /**
   * Terminate clustering when the maximum edge centrality is below
   * the given threshold.
   *
   * @param threshold the threshold value
   *
   * @param g the graph on which the threshold will be calculated
   *
   * @param normalize when true, the threshold is compared against the
   * normalized edge centrality based on the input graph; otherwise,
   * the threshold is compared against the absolute edge centrality.
   */
  template<typename Graph>
  bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
    : threshold(threshold), dividend(1.0)
  {
    if (normalize) {
      typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
      dividend = T((n - 1) * (n - 2)) / T(2);
    }
  }

  /** Returns true when the given maximum edge centrality (potentially
   * normalized) falls below the threshold.
   */
  template<typename Graph, typename Edge>
  bool operator()(T max_centrality, Edge, const Graph&)
  {
    return (max_centrality / dividend) < threshold;
  }

 protected:
  T threshold;
  T dividend;
};

/** Graph clustering based on edge betweenness centrality.
 * 
 * This algorithm implements graph clustering based on edge
 * betweenness centrality. It is an iterative algorithm, where in each
 * step it compute the edge betweenness centrality (via @ref
 * brandes_betweenness_centrality) and removes the edge with the
 * maximum betweenness centrality. The @p done function object
 * determines when the algorithm terminates (the edge found when the
 * algorithm terminates will not be removed).
 *
 * @param g The graph on which clustering will be performed. The type
 * of this parameter (@c MutableGraph) must be a model of the
 * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
 * concepts.
 *
 * @param done The function object that indicates termination of the
 * algorithm. It must be a ternary function object thats accepts the
 * maximum centrality, the descriptor of the edge that will be
 * removed, and the graph @p g.
 *
 * @param edge_centrality (UTIL/OUT) The property map that will store
 * the betweenness centrality for each edge. When the algorithm
 * terminates, it will contain the edge centralities for the
 * graph. The type of this property map must model the
 * ReadWritePropertyMap concept. Defaults to an @c
 * iterator_property_map whose value type is 
 * @c Done::centrality_type and using @c get(edge_index, g) for the 
 * index map.
 *
 * @param vertex_index (IN) The property map that maps vertices to
 * indices in the range @c [0, num_vertices(g)). This type of this
 * property map must model the ReadablePropertyMap concept and its
 * value type must be an integral type. Defaults to 
 * @c get(vertex_index, g).
 */
template<typename MutableGraph, typename Done, typename EdgeCentralityMap,
         typename VertexIndexMap>
void 
betweenness_centrality_clustering(MutableGraph& g, Done done,
                                  EdgeCentralityMap edge_centrality,
                                  VertexIndexMap vertex_index)
{
  typedef typename property_traits<EdgeCentralityMap>::value_type
    centrality_type;
  typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator;
  typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor;

  if (has_no_edges(g)) return;

  // Function object that compares the centrality of edges
  indirect_cmp<EdgeCentralityMap, std::less<centrality_type> > 
    cmp(edge_centrality);

  bool is_done;
  do {
    brandes_betweenness_centrality(g, 
                                   edge_centrality_map(edge_centrality)
                                   .vertex_index_map(vertex_index));
    std::pair<edge_iterator, edge_iterator> edges_iters = edges(g);
    edge_descriptor e = *max_element(edges_iters.first, edges_iters.second, cmp);
    is_done = done(get(edge_centrality, e), e, g);
    if (!is_done) remove_edge(e, g);
  } while (!is_done && !has_no_edges(g));
}

/**
 * \overload
 */ 
template<typename MutableGraph, typename Done, typename EdgeCentralityMap>
void 
betweenness_centrality_clustering(MutableGraph& g, Done done,
                                  EdgeCentralityMap edge_centrality)
{
  betweenness_centrality_clustering(g, done, edge_centrality,
                                    get(vertex_index, g));
}

/**
 * \overload
 */ 
template<typename MutableGraph, typename Done>
void
betweenness_centrality_clustering(MutableGraph& g, Done done)
{
  typedef typename Done::centrality_type centrality_type;
  std::vector<centrality_type> edge_centrality(num_edges(g));
  betweenness_centrality_clustering(g, done, 
    make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
    get(vertex_index, g));
}

} // end namespace boost

#endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP