File: isomorphism.hpp

package info (click to toggle)
boost1.62 1.62.0+dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (581 lines) | stat: -rw-r--r-- 23,252 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
#define BOOST_GRAPH_ISOMORPHISM_HPP

#include <utility>
#include <vector>
#include <iterator>
#include <algorithm>
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/smart_ptr.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/detail/algorithm.hpp>
#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap
#include <boost/concept/assert.hpp>

#ifndef BOOST_GRAPH_ITERATION_MACROS_HPP
#define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file
#include <boost/graph/iteration_macros.hpp>
#endif

namespace boost {

  namespace detail {

    template <typename Graph1, typename Graph2, typename IsoMapping,
      typename Invariant1, typename Invariant2,
      typename IndexMap1, typename IndexMap2>
    class isomorphism_algo
    {
      typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
      typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
      typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
      typedef typename graph_traits<Graph1>::vertices_size_type size_type;
      typedef typename Invariant1::result_type invar1_value;
      typedef typename Invariant2::result_type invar2_value;
    
      const Graph1& G1;
      const Graph2& G2;
      IsoMapping f;
      Invariant1 invariant1;
      Invariant2 invariant2;
      std::size_t max_invariant;
      IndexMap1 index_map1;
      IndexMap2 index_map2;
    
      std::vector<vertex1_t> dfs_vertices;
      typedef typename std::vector<vertex1_t>::iterator vertex_iter;
      std::vector<int> dfs_num_vec;
      typedef safe_iterator_property_map<typename std::vector<int>::iterator,
                                         IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                         , int, int&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                         > DFSNumMap;
      DFSNumMap dfs_num;
      std::vector<edge1_t> ordered_edges;
      typedef typename std::vector<edge1_t>::iterator edge_iter;
    
      std::vector<char> in_S_vec;
      typedef safe_iterator_property_map<typename std::vector<char>::iterator,
                                         IndexMap2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                         , char, char&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                         > InSMap;
      InSMap in_S;
    
      int num_edges_on_k;
    
      friend struct compare_multiplicity;
      struct compare_multiplicity
      {
        compare_multiplicity(Invariant1 invariant1, size_type* multiplicity)
          : invariant1(invariant1), multiplicity(multiplicity) { }
        bool operator()(const vertex1_t& x, const vertex1_t& y) const {
          return multiplicity[invariant1(x)] < multiplicity[invariant1(y)];
        }
        Invariant1 invariant1;
        size_type* multiplicity;
      };
    
      struct record_dfs_order : default_dfs_visitor
      {
        record_dfs_order(std::vector<vertex1_t>& v, std::vector<edge1_t>& e) 
          : vertices(v), edges(e) { }
    
        void discover_vertex(vertex1_t v, const Graph1&) const {
          vertices.push_back(v);
        }
        void examine_edge(edge1_t e, const Graph1&) const {
          edges.push_back(e);
        }
        std::vector<vertex1_t>& vertices;
        std::vector<edge1_t>& edges;
      };
    
      struct edge_cmp {
        edge_cmp(const Graph1& G1, DFSNumMap dfs_num)
          : G1(G1), dfs_num(dfs_num) { }
        bool operator()(const edge1_t& e1, const edge1_t& e2) const {
          using namespace std;
          int u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)];
          int u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)];
          int m1 = (max)(u1, v1);
          int m2 = (max)(u2, v2);
          // lexicographical comparison 
          return std::make_pair(m1, std::make_pair(u1, v1))
            < std::make_pair(m2, std::make_pair(u2, v2));
        }
        const Graph1& G1;
        DFSNumMap dfs_num;
      };
    
    public:
      isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
                       Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant,
                       IndexMap1 index_map1, IndexMap2 index_map2)
        : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
          max_invariant(max_invariant),
          index_map1(index_map1), index_map2(index_map2)
      {
        in_S_vec.resize(num_vertices(G1));
        in_S = make_safe_iterator_property_map
          (in_S_vec.begin(), in_S_vec.size(), index_map2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
           , in_S_vec.front()
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
           );
      }
    
      bool test_isomorphism()
      {
        // reset isomapping
        BGL_FORALL_VERTICES_T(v, G1, Graph1)
          f[v] = graph_traits<Graph2>::null_vertex();
          
        {
          std::vector<invar1_value> invar1_array;
          BGL_FORALL_VERTICES_T(v, G1, Graph1)
            invar1_array.push_back(invariant1(v));
          sort(invar1_array);
        
          std::vector<invar2_value> invar2_array;
          BGL_FORALL_VERTICES_T(v, G2, Graph2)
            invar2_array.push_back(invariant2(v));
          sort(invar2_array);
          if (! equal(invar1_array, invar2_array))
            return false;
        }
        
        std::vector<vertex1_t> V_mult;
        BGL_FORALL_VERTICES_T(v, G1, Graph1)
          V_mult.push_back(v);
        {
          std::vector<size_type> multiplicity(max_invariant, 0);
          BGL_FORALL_VERTICES_T(v, G1, Graph1)
            ++multiplicity.at(invariant1(v));
          sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0]));
        }
        
        std::vector<default_color_type> color_vec(num_vertices(G1));
        safe_iterator_property_map<std::vector<default_color_type>::iterator,
                                   IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                   , default_color_type, default_color_type&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                   >
          color_map(color_vec.begin(), color_vec.size(), index_map1);
        record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
        typedef color_traits<default_color_type> Color;
        for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
          if (color_map[*u] == Color::white()) {
            dfs_visitor.start_vertex(*u, G1);
            depth_first_visit(G1, *u, dfs_visitor, color_map);
          }
        }
        // Create the dfs_num array and dfs_num_map
        dfs_num_vec.resize(num_vertices(G1));
        dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(),
                                                  dfs_num_vec.size(), 
                                                  index_map1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                                  , dfs_num_vec.front()
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                                  );
        size_type n = 0;
        for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
          dfs_num[*v] = n++;
        
        sort(ordered_edges, edge_cmp(G1, dfs_num));
        
    
        int dfs_num_k = -1;
        return this->match(ordered_edges.begin(), dfs_num_k);
      }
    
    private:
      struct match_continuation {
        enum {pos_G2_vertex_loop, pos_fi_adj_loop, pos_dfs_num} position;
        typedef typename graph_traits<Graph2>::vertex_iterator vertex_iterator;
        std::pair<vertex_iterator, vertex_iterator> G2_verts;
        typedef typename graph_traits<Graph2>::adjacency_iterator adjacency_iterator;
        std::pair<adjacency_iterator, adjacency_iterator> fi_adj;
        edge_iter iter;
        int dfs_num_k;
      };

      bool match(edge_iter iter, int dfs_num_k)
      {
        std::vector<match_continuation> k;
        typedef typename graph_traits<Graph2>::vertex_iterator vertex_iterator;
        std::pair<vertex_iterator, vertex_iterator> G2_verts(vertices(G2));
        typedef typename graph_traits<Graph2>::adjacency_iterator adjacency_iterator;
        std::pair<adjacency_iterator, adjacency_iterator> fi_adj;
        vertex1_t i, j;

        recur:
        if (iter != ordered_edges.end()) {
          i = source(*iter, G1);
          j = target(*iter, G1);
          if (dfs_num[i] > dfs_num_k) {
            G2_verts = vertices(G2);
            while (G2_verts.first != G2_verts.second) {
              {
                vertex2_t u = *G2_verts.first;
                vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];
                if (invariant1(kp1) == invariant2(u) && in_S[u] == false) {
                  {
                    f[kp1] = u;
                    in_S[u] = true;
                    num_edges_on_k = 0;
                    
                    match_continuation new_k;
                    new_k.position = match_continuation::pos_G2_vertex_loop;
                    new_k.G2_verts = G2_verts;
                    new_k.iter = iter;
                    new_k.dfs_num_k = dfs_num_k;
                    k.push_back(new_k);
                    ++dfs_num_k;
                    goto recur;
                  }
                }
              }
G2_loop_k:    ++G2_verts.first;
            }
               
          }
          else if (dfs_num[j] > dfs_num_k) {
            {
              vertex1_t vk = dfs_vertices[dfs_num_k];
              num_edges_on_k -= 
                count_if(adjacent_vertices(f[vk], G2), make_indirect_pmap(in_S));
                  
              for (int jj = 0; jj < dfs_num_k; ++jj) {
                vertex1_t j = dfs_vertices[jj];
                num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[vk]);
              }
            }
                
            if (num_edges_on_k != 0)
              goto return_point_false;
            fi_adj = adjacent_vertices(f[i], G2);
            while (fi_adj.first != fi_adj.second) {
              {
                vertex2_t v = *fi_adj.first;
                if (invariant2(v) == invariant1(j) && in_S[v] == false) {
                  f[j] = v;
                  in_S[v] = true;
                  num_edges_on_k = 1;
                  BOOST_USING_STD_MAX();
                  int next_k = max BOOST_PREVENT_MACRO_SUBSTITUTION(dfs_num_k, max BOOST_PREVENT_MACRO_SUBSTITUTION(dfs_num[i], dfs_num[j]));
                  match_continuation new_k;
                  new_k.position = match_continuation::pos_fi_adj_loop;
                  new_k.fi_adj = fi_adj;
                  new_k.iter = iter;
                  new_k.dfs_num_k = dfs_num_k;
                  ++iter;
                  dfs_num_k = next_k;
                  k.push_back(new_k);
                  goto recur;
                }
              }
fi_adj_loop_k:++fi_adj.first;
            }
          }
          else {
            if (container_contains(adjacent_vertices(f[i], G2), f[j])) {
              ++num_edges_on_k;
              match_continuation new_k;
              new_k.position = match_continuation::pos_dfs_num;
              k.push_back(new_k);
              ++iter;
              goto recur;
            }
                
          }
        } else 
          goto return_point_true;
        goto return_point_false;
    
        {
          return_point_true: return true;

          return_point_false:
          if (k.empty()) return false;
          const match_continuation& this_k = k.back();
          switch (this_k.position) {
            case match_continuation::pos_G2_vertex_loop: {G2_verts = this_k.G2_verts; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*G2_verts.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto G2_loop_k;}
            case match_continuation::pos_fi_adj_loop: {fi_adj = this_k.fi_adj; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*fi_adj.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto fi_adj_loop_k;}
            case match_continuation::pos_dfs_num: {k.pop_back(); goto return_point_false;}
            default: {
              BOOST_ASSERT(!"Bad position");
#ifdef UNDER_CE
              exit(-1);
#else
              abort();
#endif
            }
          }
        }
      }
    };

    
    template <typename Graph, typename InDegreeMap>
    void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
    {
      BGL_FORALL_VERTICES_T(v, g, Graph)
        put(in_degree_map, v, 0);

      BGL_FORALL_VERTICES_T(u, g, Graph)
        BGL_FORALL_ADJ_T(u, v, g, Graph)
        put(in_degree_map, v, get(in_degree_map, v) + 1);
    }

  } // namespace detail


  template <typename InDegreeMap, typename Graph>
  class degree_vertex_invariant
  {
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::degree_size_type size_type;
  public:
    typedef vertex_t argument_type;
    typedef size_type result_type;

    degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
      : m_in_degree_map(in_degree_map),
        m_max_vertex_in_degree(0),
        m_max_vertex_out_degree(0),
        m_g(g) {
      BGL_FORALL_VERTICES_T(v, g, Graph) {
        m_max_vertex_in_degree =
          (std::max)(m_max_vertex_in_degree, get(m_in_degree_map, v));
        m_max_vertex_out_degree =
          (std::max)(m_max_vertex_out_degree, out_degree(v, g));
      }
    }

    size_type operator()(vertex_t v) const {
      return (m_max_vertex_in_degree + 1) * out_degree(v, m_g)
        + get(m_in_degree_map, v);
    }
    // The largest possible vertex invariant number
    size_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { 
      return (m_max_vertex_in_degree + 1) * (m_max_vertex_out_degree + 1);
    }
  private:
    InDegreeMap m_in_degree_map;
    size_type m_max_vertex_in_degree;
    size_type m_max_vertex_out_degree;
    const Graph& m_g;
  };

  // Count actual number of vertices, even in filtered graphs.
  template <typename Graph>
  size_t count_vertices(const Graph& g)
  {
      size_t n = 0;
      BGL_FORALL_VERTICES_T(v, g, Graph) {(void)v; ++n;}
      return n;
  }

  template <typename Graph1, typename Graph2, typename IsoMapping, 
    typename Invariant1, typename Invariant2,
    typename IndexMap1, typename IndexMap2>
  bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, 
                   Invariant1 invariant1, Invariant2 invariant2, 
                   std::size_t max_invariant,
                   IndexMap1 index_map1, IndexMap2 index_map2)

  {
    // Graph requirements
    BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
    //BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
    
    typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
    typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
    typedef typename graph_traits<Graph1>::vertices_size_type size_type;
    
    // Vertex invariant requirement
    BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant1,
      size_type, vertex1_t> ));
    BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant2,
      size_type, vertex2_t> ));
    
    // Property map requirements
    BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<IsoMapping, vertex1_t> ));
    typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
    BOOST_STATIC_ASSERT((is_convertible<IsoMappingValue, vertex2_t>::value));
    
    BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_t> ));
    typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
    BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));
    
    BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_t> ));
    typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
    BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
    
    if (count_vertices(G1) != count_vertices(G2))
      return false;
    if (count_vertices(G1) == 0 && count_vertices(G2) == 0)
      return true;
    
    detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1,
      Invariant2, IndexMap1, IndexMap2> 
      algo(G1, G2, f, invariant1, invariant2, max_invariant, 
           index_map1, index_map2);
    return algo.test_isomorphism();
  }


  namespace detail {
  
    template <typename Graph1, typename Graph2, 
      typename IsoMapping, 
      typename IndexMap1, typename IndexMap2,
      typename P, typename T, typename R>
    bool isomorphism_impl(const Graph1& G1, const Graph2& G2, 
                          IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
                          const bgl_named_params<P,T,R>& params)
    {
      std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
      typedef safe_iterator_property_map<std::vector<std::size_t>::iterator,
                                         IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                         , std::size_t, std::size_t&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                         > InDeg1;
      InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
      compute_in_degree(G1, in_degree1);

      std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
      typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, 
                                         IndexMap2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
                                         , std::size_t, std::size_t&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
                                         > InDeg2;
      InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
      compute_in_degree(G2, in_degree2);

      degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
      degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);

      return isomorphism(G1, G2, f,
                         choose_param(get_param(params, vertex_invariant1_t()), invariant1),
                         choose_param(get_param(params, vertex_invariant2_t()), invariant2),
                         choose_param(get_param(params, vertex_max_invariant_t()), (invariant2.max)()),
                         index_map1, index_map2
                         );  
    }  

    template <typename G, typename Index>
    struct make_degree_invariant {
      const G& g;
      const Index& index;
      make_degree_invariant(const G& g, const Index& index): g(g), index(index) {}
      typedef typename boost::graph_traits<G>::degree_size_type degree_size_type;
      typedef shared_array_property_map<degree_size_type, Index> prop_map_type;
      typedef degree_vertex_invariant<prop_map_type, G> result_type;
      result_type operator()() const {
        prop_map_type pm = make_shared_array_property_map(num_vertices(g), degree_size_type(), index);
        compute_in_degree(g, pm);
        return result_type(pm, g);
      }
    };
   
  } // namespace detail

  namespace graph {
    namespace detail {
      template <typename Graph1, typename Graph2>
      struct isomorphism_impl {
        typedef bool result_type;
        template <typename ArgPack>
        bool operator()(const Graph1& g1, const Graph2& g2, const ArgPack& arg_pack) const {
          using namespace boost::graph::keywords;
          typedef typename boost::detail::override_const_property_result<ArgPack, tag::vertex_index1_map, boost::vertex_index_t, Graph1>::type index1_map_type;
          typedef typename boost::detail::override_const_property_result<ArgPack, tag::vertex_index2_map, boost::vertex_index_t, Graph2>::type index2_map_type;
          index1_map_type index1_map = boost::detail::override_const_property(arg_pack, _vertex_index1_map, g1, boost::vertex_index);
          index2_map_type index2_map = boost::detail::override_const_property(arg_pack, _vertex_index2_map, g2, boost::vertex_index);
          typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
          typename std::vector<vertex2_t>::size_type n = (typename std::vector<vertex2_t>::size_type)num_vertices(g1);
          std::vector<vertex2_t> f(n);
          typename boost::parameter::lazy_binding<
                     ArgPack,
                     tag::vertex_invariant1,
                     boost::detail::make_degree_invariant<Graph1, index1_map_type> >::type
            invariant1 =
              arg_pack[_vertex_invariant1 || boost::detail::make_degree_invariant<Graph1, index1_map_type>(g1, index1_map)];
          typename boost::parameter::lazy_binding<
                     ArgPack,
                     tag::vertex_invariant2,
                     boost::detail::make_degree_invariant<Graph2, index2_map_type> >::type
            invariant2 =
              arg_pack[_vertex_invariant2 || boost::detail::make_degree_invariant<Graph2, index2_map_type>(g2, index2_map)];
          return boost::isomorphism
                   (g1, g2,
                    choose_param(arg_pack[_isomorphism_map | boost::param_not_found()],
                                 make_shared_array_property_map(num_vertices(g1), vertex2_t(), index1_map)),
                    invariant1,
                    invariant2,
                    arg_pack[_vertex_max_invariant | (invariant2.max)()],
                    index1_map,
                    index2_map);
        }
      };
    }
    BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(isomorphism, 2, 6)
  }

  // Named parameter interface
  BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(isomorphism, 2)

  // Verify that the given mapping iso_map from the vertices of g1 to the
  // vertices of g2 describes an isomorphism.
  // Note: this could be made much faster by specializing based on the graph
  // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
  // O(n^4) won't hurt us.
  template<typename Graph1, typename Graph2, typename IsoMap>
  inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
  {
#if 0
    // problematic for filtered_graph!
    if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
      return false;
#endif
  
    BGL_FORALL_EDGES_T(e1, g1, Graph1) {
      bool found_edge = false;
      BGL_FORALL_EDGES_T(e2, g2, Graph2) {
        if (source(e2, g2) == get(iso_map, source(e1, g1)) &&
            target(e2, g2) == get(iso_map, target(e1, g1))) {
          found_edge = true;
        }
      }
    
      if (!found_edge)
        return false;
    }
  
    return true;
  }

} // namespace boost

#ifdef BOOST_ISO_INCLUDED_ITER_MACROS
#undef BOOST_ISO_INCLUDED_ITER_MACROS
#include <boost/graph/iteration_macros_undef.hpp>
#endif

#endif // BOOST_GRAPH_ISOMORPHISM_HPP