File: max_cardinality_matching.hpp

package info (click to toggle)
boost1.62 1.62.0+dfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (899 lines) | stat: -rw-r--r-- 29,819 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
//=======================================================================
// Copyright (c) 2005 Aaron Windsor
//
// Distributed under the Boost Software License, Version 1.0. 
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//=======================================================================

#ifndef BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
#define BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP

#include <vector>
#include <list>
#include <deque>
#include <algorithm>                     // for std::sort and std::stable_sort
#include <utility>                       // for std::pair
#include <boost/property_map/property_map.hpp>
#include <boost/graph/graph_traits.hpp>  
#include <boost/graph/visitors.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/assert.hpp>


namespace boost
{
  namespace graph { namespace detail {
    enum { V_EVEN, V_ODD, V_UNREACHED };
  } } // end namespace graph::detail

  template <typename Graph, typename MateMap, typename VertexIndexMap>
  typename graph_traits<Graph>::vertices_size_type 
  matching_size(const Graph& g, MateMap mate, VertexIndexMap vm)
  {
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits<Graph>::vertex_descriptor
      vertex_descriptor_t;
    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;

    v_size_t size_of_matching = 0;
    vertex_iterator_t vi, vi_end;

    for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
      {
        vertex_descriptor_t v = *vi;
        if (get(mate,v) != graph_traits<Graph>::null_vertex() 
            && get(vm,v) < get(vm,get(mate,v)))
        ++size_of_matching;
      }
    return size_of_matching;
  }




  template <typename Graph, typename MateMap>
  inline typename graph_traits<Graph>::vertices_size_type
  matching_size(const Graph& g, MateMap mate)
  {
    return matching_size(g, mate, get(vertex_index,g));
  }




  template <typename Graph, typename MateMap, typename VertexIndexMap>
  bool is_a_matching(const Graph& g, MateMap mate, VertexIndexMap)
  {
    typedef typename graph_traits<Graph>::vertex_descriptor
      vertex_descriptor_t;
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;

    vertex_iterator_t vi, vi_end;
    for( boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
      {
        vertex_descriptor_t v = *vi;
        if (get(mate,v) != graph_traits<Graph>::null_vertex() 
            && v != get(mate,get(mate,v)))
        return false;
      }    
    return true;
  }




  template <typename Graph, typename MateMap>
  inline bool is_a_matching(const Graph& g, MateMap mate)
  {
    return is_a_matching(g, mate, get(vertex_index,g));
  }




  //***************************************************************************
  //***************************************************************************
  //               Maximum Cardinality Matching Functors 
  //***************************************************************************
  //***************************************************************************
  
  template <typename Graph, typename MateMap, 
            typename VertexIndexMap = dummy_property_map>
  struct no_augmenting_path_finder
  {
    no_augmenting_path_finder(const Graph&, MateMap, VertexIndexMap)
    { }

    inline bool augment_matching() { return false; }

    template <typename PropertyMap>
    void get_current_matching(PropertyMap) {}
  };




  template <typename Graph, typename MateMap, typename VertexIndexMap>
  class edmonds_augmenting_path_finder
  {
    // This implementation of Edmonds' matching algorithm closely
    // follows Tarjan's description of the algorithm in "Data
    // Structures and Network Algorithms."

  public:

    //generates the type of an iterator property map from vertices to type X
    template <typename X>
    struct map_vertex_to_ 
    { 
      typedef boost::iterator_property_map<typename std::vector<X>::iterator,
                                           VertexIndexMap> type; 
    };
    
    typedef typename graph_traits<Graph>::vertex_descriptor
      vertex_descriptor_t;
    typedef typename std::pair< vertex_descriptor_t, vertex_descriptor_t >
      vertex_pair_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor_t; 
    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
    typedef typename graph_traits<Graph>::edges_size_type e_size_t;
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits<Graph>::out_edge_iterator 
      out_edge_iterator_t;
    typedef typename std::deque<vertex_descriptor_t> vertex_list_t;
    typedef typename std::vector<edge_descriptor_t> edge_list_t;
    typedef typename map_vertex_to_<vertex_descriptor_t>::type 
      vertex_to_vertex_map_t;
    typedef typename map_vertex_to_<int>::type vertex_to_int_map_t;
    typedef typename map_vertex_to_<vertex_pair_t>::type 
      vertex_to_vertex_pair_map_t;
    typedef typename map_vertex_to_<v_size_t>::type vertex_to_vsize_map_t;
    typedef typename map_vertex_to_<e_size_t>::type vertex_to_esize_map_t;



    
    edmonds_augmenting_path_finder(const Graph& arg_g, MateMap arg_mate, 
                                   VertexIndexMap arg_vm) : 
      g(arg_g),
      vm(arg_vm),
      n_vertices(num_vertices(arg_g)),

      mate_vector(n_vertices),
      ancestor_of_v_vector(n_vertices),
      ancestor_of_w_vector(n_vertices),
      vertex_state_vector(n_vertices),
      origin_vector(n_vertices),
      pred_vector(n_vertices),
      bridge_vector(n_vertices),
      ds_parent_vector(n_vertices),
      ds_rank_vector(n_vertices),

      mate(mate_vector.begin(), vm),
      ancestor_of_v(ancestor_of_v_vector.begin(), vm),
      ancestor_of_w(ancestor_of_w_vector.begin(), vm),
      vertex_state(vertex_state_vector.begin(), vm),
      origin(origin_vector.begin(), vm),
      pred(pred_vector.begin(), vm),
      bridge(bridge_vector.begin(), vm),
      ds_parent_map(ds_parent_vector.begin(), vm),
      ds_rank_map(ds_rank_vector.begin(), vm),

      ds(ds_rank_map, ds_parent_map)
    {
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        mate[*vi] = get(arg_mate, *vi);
    }


    

    bool augment_matching()
    {
      //As an optimization, some of these values can be saved from one
      //iteration to the next instead of being re-initialized each
      //iteration, allowing for "lazy blossom expansion." This is not
      //currently implemented.
      
      e_size_t timestamp = 0;
      even_edges.clear();
      
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
      {
        vertex_descriptor_t u = *vi;
      
        origin[u] = u;
        pred[u] = u;
        ancestor_of_v[u] = 0;
        ancestor_of_w[u] = 0;
        ds.make_set(u);
      
        if (mate[u] == graph_traits<Graph>::null_vertex())
        {
          vertex_state[u] = graph::detail::V_EVEN;
          out_edge_iterator_t ei, ei_end;
          for(boost::tie(ei,ei_end) = out_edges(u,g); ei != ei_end; ++ei)
          {
            if (target(*ei,g) != u)
            {
              even_edges.push_back( *ei );
            }
          }
        }
        else
          vertex_state[u] = graph::detail::V_UNREACHED;      
      }
    
      //end initializations
    
      vertex_descriptor_t v,w,w_free_ancestor,v_free_ancestor;
      w_free_ancestor = graph_traits<Graph>::null_vertex();
      v_free_ancestor = graph_traits<Graph>::null_vertex(); 
      bool found_alternating_path = false;
      
      while(!even_edges.empty() && !found_alternating_path)
      {
        // since we push even edges onto the back of the list as
        // they're discovered, taking them off the back will search
        // for augmenting paths depth-first.
        edge_descriptor_t current_edge = even_edges.back();
        even_edges.pop_back();

        v = source(current_edge,g);
        w = target(current_edge,g);
      
        vertex_descriptor_t v_prime = origin[ds.find_set(v)];
        vertex_descriptor_t w_prime = origin[ds.find_set(w)];
      
        // because of the way we put all of the edges on the queue,
        // v_prime should be labeled V_EVEN; the following is a
        // little paranoid but it could happen...
        if (vertex_state[v_prime] != graph::detail::V_EVEN)
        {
          std::swap(v_prime,w_prime);
          std::swap(v,w);
        }

        if (vertex_state[w_prime] == graph::detail::V_UNREACHED)
        {
          vertex_state[w_prime] = graph::detail::V_ODD;
          vertex_descriptor_t w_prime_mate = mate[w_prime];
          vertex_state[w_prime_mate] = graph::detail::V_EVEN;
          out_edge_iterator_t ei, ei_end;
          for( boost::tie(ei,ei_end) = out_edges(w_prime_mate, g); ei != ei_end; ++ei)
          {
            if (target(*ei,g) != w_prime_mate)
            {
              even_edges.push_back(*ei);
            }
          }
          pred[w_prime] = v;
        }
        
        //w_prime == v_prime can happen below if we get an edge that has been
        //shrunk into a blossom
        else if (vertex_state[w_prime] == graph::detail::V_EVEN && w_prime != v_prime) 
        {                                                             
          vertex_descriptor_t w_up = w_prime;
          vertex_descriptor_t v_up = v_prime;
          vertex_descriptor_t nearest_common_ancestor 
                = graph_traits<Graph>::null_vertex();
          w_free_ancestor = graph_traits<Graph>::null_vertex();
          v_free_ancestor = graph_traits<Graph>::null_vertex();
          
          // We now need to distinguish between the case that
          // w_prime and v_prime share an ancestor under the
          // "parent" relation, in which case we've found a
          // blossom and should shrink it, or the case that
          // w_prime and v_prime both have distinct ancestors that
          // are free, in which case we've found an alternating
          // path between those two ancestors.

          ++timestamp;

          while (nearest_common_ancestor == graph_traits<Graph>::null_vertex() && 
             (v_free_ancestor == graph_traits<Graph>::null_vertex() || 
              w_free_ancestor == graph_traits<Graph>::null_vertex()
              )
             )
          {
            ancestor_of_w[w_up] = timestamp;
            ancestor_of_v[v_up] = timestamp;

            if (w_free_ancestor == graph_traits<Graph>::null_vertex())
              w_up = parent(w_up);
            if (v_free_ancestor == graph_traits<Graph>::null_vertex())
              v_up = parent(v_up);
          
            if (mate[v_up] == graph_traits<Graph>::null_vertex())
              v_free_ancestor = v_up;
            if (mate[w_up] == graph_traits<Graph>::null_vertex())
              w_free_ancestor = w_up;
          
            if (ancestor_of_w[v_up] == timestamp)
              nearest_common_ancestor = v_up;
            else if (ancestor_of_v[w_up] == timestamp)
              nearest_common_ancestor = w_up;
            else if (v_free_ancestor == w_free_ancestor && 
              v_free_ancestor != graph_traits<Graph>::null_vertex())
            nearest_common_ancestor = v_up;
          }
          
          if (nearest_common_ancestor == graph_traits<Graph>::null_vertex())
            found_alternating_path = true; //to break out of the loop
          else
          {
            //shrink the blossom
            link_and_set_bridges(w_prime, nearest_common_ancestor, std::make_pair(w,v));
            link_and_set_bridges(v_prime, nearest_common_ancestor, std::make_pair(v,w));
          }
        }      
      }
      
      if (!found_alternating_path)
        return false;

      // retrieve the augmenting path and put it in aug_path
      reversed_retrieve_augmenting_path(v, v_free_ancestor);
      retrieve_augmenting_path(w, w_free_ancestor);

      // augment the matching along aug_path
      vertex_descriptor_t a,b;
      while (!aug_path.empty())
      {
        a = aug_path.front();
        aug_path.pop_front();
        b = aug_path.front();
        aug_path.pop_front();
        mate[a] = b;
        mate[b] = a;
      }
      
      return true;
      
    }




    template <typename PropertyMap>
    void get_current_matching(PropertyMap pm)
    {
      vertex_iterator_t vi,vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        put(pm, *vi, mate[*vi]);
    }




    template <typename PropertyMap>
    void get_vertex_state_map(PropertyMap pm)
    {
      vertex_iterator_t vi,vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        put(pm, *vi, vertex_state[origin[ds.find_set(*vi)]]);
    }




  private:    

    vertex_descriptor_t parent(vertex_descriptor_t x)
    {
      if (vertex_state[x] == graph::detail::V_EVEN 
          && mate[x] != graph_traits<Graph>::null_vertex())
        return mate[x];
      else if (vertex_state[x] == graph::detail::V_ODD)
        return origin[ds.find_set(pred[x])];
      else
        return x;
    }
    
    


    void link_and_set_bridges(vertex_descriptor_t x, 
                              vertex_descriptor_t stop_vertex, 
                  vertex_pair_t the_bridge)
    {
      for(vertex_descriptor_t v = x; v != stop_vertex; v = parent(v))
      {
        ds.union_set(v, stop_vertex);
        origin[ds.find_set(stop_vertex)] = stop_vertex;

        if (vertex_state[v] == graph::detail::V_ODD)
        {
          bridge[v] = the_bridge;
          out_edge_iterator_t oei, oei_end;
          for(boost::tie(oei, oei_end) = out_edges(v,g); oei != oei_end; ++oei)
          {
            if (target(*oei,g) != v)
            {
              even_edges.push_back(*oei);
            }
          }
        }
      }
    }
    

    // Since none of the STL containers support both constant-time
    // concatenation and reversal, the process of expanding an
    // augmenting path once we know one exists is a little more
    // complicated than it has to be. If we know the path is from v to
    // w, then the augmenting path is recursively defined as:
    //
    // path(v,w) = [v], if v = w
    //           = concat([v, mate[v]], path(pred[mate[v]], w), 
    //                if v != w and vertex_state[v] == graph::detail::V_EVEN
    //           = concat([v], reverse(path(x,mate[v])), path(y,w)),
    //                if v != w, vertex_state[v] == graph::detail::V_ODD, and bridge[v] = (x,y)
    //
    // These next two mutually recursive functions implement this definition.
    
    void retrieve_augmenting_path(vertex_descriptor_t v, vertex_descriptor_t w)  
    {
      if (v == w)
        aug_path.push_back(v);
      else if (vertex_state[v] == graph::detail::V_EVEN)
      {
        aug_path.push_back(v);
        aug_path.push_back(mate[v]);
        retrieve_augmenting_path(pred[mate[v]], w);
      }
      else //vertex_state[v] == graph::detail::V_ODD 
      {
        aug_path.push_back(v);
        reversed_retrieve_augmenting_path(bridge[v].first, mate[v]);
        retrieve_augmenting_path(bridge[v].second, w);
      }
    }


    void reversed_retrieve_augmenting_path(vertex_descriptor_t v,
                                           vertex_descriptor_t w)  
    {

      if (v == w)
        aug_path.push_back(v);
      else if (vertex_state[v] == graph::detail::V_EVEN)
      {
        reversed_retrieve_augmenting_path(pred[mate[v]], w);
        aug_path.push_back(mate[v]);
        aug_path.push_back(v);
      }
      else //vertex_state[v] == graph::detail::V_ODD 
      {
        reversed_retrieve_augmenting_path(bridge[v].second, w);
        retrieve_augmenting_path(bridge[v].first, mate[v]);
        aug_path.push_back(v);
      }
    }

    


    //private data members
    
    const Graph& g;
    VertexIndexMap vm;
    v_size_t n_vertices;
    
    //storage for the property maps below
    std::vector<vertex_descriptor_t> mate_vector;
    std::vector<e_size_t> ancestor_of_v_vector;
    std::vector<e_size_t> ancestor_of_w_vector;
    std::vector<int> vertex_state_vector;
    std::vector<vertex_descriptor_t> origin_vector;
    std::vector<vertex_descriptor_t> pred_vector;
    std::vector<vertex_pair_t> bridge_vector;
    std::vector<vertex_descriptor_t> ds_parent_vector;
    std::vector<v_size_t> ds_rank_vector;

    //iterator property maps
    vertex_to_vertex_map_t mate;
    vertex_to_esize_map_t ancestor_of_v;
    vertex_to_esize_map_t ancestor_of_w;
    vertex_to_int_map_t vertex_state;
    vertex_to_vertex_map_t origin;
    vertex_to_vertex_map_t pred;
    vertex_to_vertex_pair_map_t bridge;
    vertex_to_vertex_map_t ds_parent_map;
    vertex_to_vsize_map_t ds_rank_map;

    vertex_list_t aug_path;
    edge_list_t even_edges;
    disjoint_sets< vertex_to_vsize_map_t, vertex_to_vertex_map_t > ds;

  };




  //***************************************************************************
  //***************************************************************************
  //               Initial Matching Functors
  //***************************************************************************
  //***************************************************************************
  
  template <typename Graph, typename MateMap>
  struct greedy_matching
  {
    typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; 
    typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;

    static void find_matching(const Graph& g, MateMap mate)
    {
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        put(mate, *vi, graph_traits<Graph>::null_vertex());
            
      edge_iterator_t ei, ei_end;
      for( boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
      {
        edge_descriptor_t e = *ei;
        vertex_descriptor_t u = source(e,g);
        vertex_descriptor_t v = target(e,g);
      
        if (u != v && get(mate,u) == get(mate,v))  
        //only way equality can hold is if
        //   mate[u] == mate[v] == null_vertex
        {
          put(mate,u,v);
          put(mate,v,u);
        }
      }    
    }
  };
  


  
  template <typename Graph, typename MateMap>
  struct extra_greedy_matching
  {
    // The "extra greedy matching" is formed by repeating the
    // following procedure as many times as possible: Choose the
    // unmatched vertex v of minimum non-zero degree.  Choose the
    // neighbor w of v which is unmatched and has minimum degree over
    // all of v's neighbors. Add (u,v) to the matching. Ties for
    // either choice are broken arbitrarily. This procedure takes time
    // O(m log n), where m is the number of edges in the graph and n
    // is the number of vertices.
    
    typedef typename graph_traits< Graph >::vertex_descriptor
      vertex_descriptor_t;
    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; 
    typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
    typedef std::pair<vertex_descriptor_t, vertex_descriptor_t> vertex_pair_t;
    
    struct select_first
    {
      inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) 
      {return p.first;}
    };

    struct select_second
    {
      inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) 
      {return p.second;}
    };

    template <class PairSelector>
    class less_than_by_degree
    {
    public:
      less_than_by_degree(const Graph& g): m_g(g) {}
      bool operator() (const vertex_pair_t x, const vertex_pair_t y)
      {
        return 
          out_degree(PairSelector::select_vertex(x), m_g) 
          < out_degree(PairSelector::select_vertex(y), m_g);
      }
    private:
      const Graph& m_g;
    };


    static void find_matching(const Graph& g, MateMap mate)
    {
      typedef std::vector<std::pair<vertex_descriptor_t, vertex_descriptor_t> >
        directed_edges_vector_t;
      
      directed_edges_vector_t edge_list;
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
        put(mate, *vi, graph_traits<Graph>::null_vertex());

      edge_iterator_t ei, ei_end;
      for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
      {
        edge_descriptor_t e = *ei;
        vertex_descriptor_t u = source(e,g);
        vertex_descriptor_t v = target(e,g);
        if (u == v) continue;
        edge_list.push_back(std::make_pair(u,v));
        edge_list.push_back(std::make_pair(v,u));
      }
      
      //sort the edges by the degree of the target, then (using a
      //stable sort) by degree of the source
      std::sort(edge_list.begin(), edge_list.end(), 
                less_than_by_degree<select_second>(g));
      std::stable_sort(edge_list.begin(), edge_list.end(), 
                       less_than_by_degree<select_first>(g));
      
      //construct the extra greedy matching
      for(typename directed_edges_vector_t::const_iterator itr = edge_list.begin(); itr != edge_list.end(); ++itr)
      {
        if (get(mate,itr->first) == get(mate,itr->second)) 
        //only way equality can hold is if mate[itr->first] == mate[itr->second] == null_vertex
        {
          put(mate, itr->first, itr->second);
          put(mate, itr->second, itr->first);
        }
      }    
    }
  };


  

  template <typename Graph, typename MateMap>
  struct empty_matching
  { 
    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
    
    static void find_matching(const Graph& g, MateMap mate)
    {
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        put(mate, *vi, graph_traits<Graph>::null_vertex());
    }
  };
  



  //***************************************************************************
  //***************************************************************************
  //               Matching Verifiers
  //***************************************************************************
  //***************************************************************************

  namespace detail
  {

    template <typename SizeType>
    class odd_components_counter : public dfs_visitor<>
    // This depth-first search visitor will count the number of connected 
    // components with an odd number of vertices. It's used by 
    // maximum_matching_verifier.
    {
    public:
      odd_components_counter(SizeType& c_count):
        m_count(c_count)
      {
        m_count = 0;
      }
      
      template <class Vertex, class Graph>
      void start_vertex(Vertex, Graph&) 
      {
        m_parity = false; 
      }
      
      template <class Vertex, class Graph>
      void discover_vertex(Vertex, Graph&) 
      {
        m_parity = !m_parity;
        m_parity ? ++m_count : --m_count;
      }
      
    protected:
      SizeType& m_count;
      
    private:
      bool m_parity;
      
    };

  }//namespace detail




  template <typename Graph, typename MateMap, 
            typename VertexIndexMap = dummy_property_map>
  struct no_matching_verifier
  {
    inline static bool 
    verify_matching(const Graph&, MateMap, VertexIndexMap) 
    { return true;}
  };
  
  


  template <typename Graph, typename MateMap, typename VertexIndexMap>
  struct maximum_cardinality_matching_verifier
  {

    template <typename X>
    struct map_vertex_to_
    { 
      typedef boost::iterator_property_map<typename std::vector<X>::iterator,
                                           VertexIndexMap> type; 
    };

    typedef typename graph_traits<Graph>::vertex_descriptor 
      vertex_descriptor_t;
    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    typedef typename map_vertex_to_<int>::type vertex_to_int_map_t;
    typedef typename map_vertex_to_<vertex_descriptor_t>::type 
      vertex_to_vertex_map_t;


    template <typename VertexStateMap>
    struct non_odd_vertex {
      //this predicate is used to create a filtered graph that
      //excludes vertices labeled "graph::detail::V_ODD"
      non_odd_vertex() : vertex_state(0) { }
  
      non_odd_vertex(VertexStateMap* arg_vertex_state) 
        : vertex_state(arg_vertex_state) { }

      template <typename Vertex>
      bool operator()(const Vertex& v) const 
      {
        BOOST_ASSERT(vertex_state);
        return get(*vertex_state, v) != graph::detail::V_ODD;
      }

      VertexStateMap* vertex_state;
    };


    static bool verify_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
    {
      //For any graph G, let o(G) be the number of connected
      //components in G of odd size. For a subset S of G's vertex set
      //V(G), let (G - S) represent the subgraph of G induced by
      //removing all vertices in S from G. Let M(G) be the size of the
      //maximum cardinality matching in G. Then the Tutte-Berge
      //formula guarantees that
      //
      //           2 * M(G) = min ( |V(G)| + |U| + o(G - U) )
      //
      //where the minimum is taken over all subsets U of
      //V(G). Edmonds' algorithm finds a set U that achieves the
      //minimum in the above formula, namely the vertices labeled
      //"ODD." This function runs one iteration of Edmonds' algorithm
      //to find U, then verifies that the size of the matching given
      //by mate satisfies the Tutte-Berge formula.

      //first, make sure it's a valid matching
      if (!is_a_matching(g,mate,vm))
        return false;

      //We'll try to augment the matching once. This serves two
      //purposes: first, if we find some augmenting path, the matching
      //is obviously non-maximum. Second, running edmonds' algorithm
      //on a graph with no augmenting path will create the
      //Edmonds-Gallai decomposition that we need as a certificate of
      //maximality - we can get it by looking at the vertex_state map
      //that results.
      edmonds_augmenting_path_finder<Graph,MateMap,VertexIndexMap>
        augmentor(g,mate,vm);
      if (augmentor.augment_matching())
        return false;

      std::vector<int> vertex_state_vector(num_vertices(g));
      vertex_to_int_map_t vertex_state(vertex_state_vector.begin(), vm);
      augmentor.get_vertex_state_map(vertex_state);
      
      //count the number of graph::detail::V_ODD vertices
      v_size_t num_odd_vertices = 0;
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        if (vertex_state[*vi] == graph::detail::V_ODD)
          ++num_odd_vertices;

      //count the number of connected components with odd cardinality
      //in the graph without graph::detail::V_ODD vertices
      non_odd_vertex<vertex_to_int_map_t> filter(&vertex_state);
      filtered_graph<Graph, keep_all, non_odd_vertex<vertex_to_int_map_t> > fg(g, keep_all(), filter);

      v_size_t num_odd_components;
      detail::odd_components_counter<v_size_t> occ(num_odd_components);
      depth_first_search(fg, visitor(occ).vertex_index_map(vm));

      if (2 * matching_size(g,mate,vm) == num_vertices(g) + num_odd_vertices - num_odd_components)
        return true;
      else
        return false;
    }
  };




  template <typename Graph, 
        typename MateMap,
        typename VertexIndexMap,
        template <typename, typename, typename> class AugmentingPathFinder, 
        template <typename, typename> class InitialMatchingFinder,
        template <typename, typename, typename> class MatchingVerifier>
  bool matching(const Graph& g, MateMap mate, VertexIndexMap vm)
  {
    
    InitialMatchingFinder<Graph,MateMap>::find_matching(g,mate);

    AugmentingPathFinder<Graph,MateMap,VertexIndexMap> augmentor(g,mate,vm);
    bool not_maximum_yet = true;
    while(not_maximum_yet)
      {
        not_maximum_yet = augmentor.augment_matching();
      }
    augmentor.get_current_matching(mate);

    return MatchingVerifier<Graph,MateMap,VertexIndexMap>::verify_matching(g,mate,vm);    
    
  }




  template <typename Graph, typename MateMap, typename VertexIndexMap>
  inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
  {
    return matching 
      < Graph, MateMap, VertexIndexMap,
        edmonds_augmenting_path_finder, extra_greedy_matching, maximum_cardinality_matching_verifier>
      (g, mate, vm);
  }




  template <typename Graph, typename MateMap>
  inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate)
  {
    return checked_edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g));
  }




  template <typename Graph, typename MateMap, typename VertexIndexMap>
  inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
  {
    matching < Graph, MateMap, VertexIndexMap,
               edmonds_augmenting_path_finder, extra_greedy_matching, no_matching_verifier>
      (g, mate, vm);
  }




  template <typename Graph, typename MateMap>
  inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate)
  {
    edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g));
  }

}//namespace boost

#endif //BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP