File: vf2_sub_graph_iso.hpp

package info (click to toggle)
boost1.62 1.62.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 686,420 kB
  • sloc: cpp: 2,609,004; xml: 972,558; ansic: 53,674; python: 32,437; sh: 8,829; asm: 3,071; cs: 2,121; makefile: 964; perl: 859; yacc: 472; php: 132; ruby: 94; f90: 55; sql: 13; csh: 6
file content (1233 lines) | stat: -rw-r--r-- 48,574 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
//=======================================================================
// Copyright (C) 2012 Flavio De Lorenzi (fdlorenzi@gmail.com)
// Copyright (C) 2013 Jakob Lykke Andersen, University of Southern Denmark (jlandersen@imada.sdu.dk)
//
// The algorithm implemented here is derived from original ideas by 
// Pasquale Foggia and colaborators. For further information see 
// e.g. Cordella et al. 2001, 2004.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================

// Revision History:
//   8 April 2013: Fixed a typo in vf2_print_callback. (Flavio De Lorenzi) 

#ifndef BOOST_VF2_SUB_GRAPH_ISO_HPP
#define BOOST_VF2_SUB_GRAPH_ISO_HPP

#include <iostream>
#include <iomanip>
#include <iterator>
#include <vector>
#include <utility>

#include <boost/assert.hpp>
#include <boost/concept/assert.hpp>
#include <boost/concept_check.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/mcgregor_common_subgraphs.hpp> // for always_equivalent
#include <boost/graph/named_function_params.hpp>
#include <boost/type_traits/has_less.hpp>
#include <boost/mpl/int.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/utility/enable_if.hpp>

#ifndef BOOST_GRAPH_ITERATION_MACROS_HPP
#define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file
#include <boost/graph/iteration_macros.hpp>
#endif

namespace boost {
  
  // Default print_callback
  template <typename Graph1,
            typename Graph2>
  struct vf2_print_callback {
    
    vf2_print_callback(const Graph1& graph1, const Graph2& graph2) 
      : graph1_(graph1), graph2_(graph2) {}
    
    template <typename CorrespondenceMap1To2,
              typename CorrespondenceMap2To1>
    bool operator()(CorrespondenceMap1To2 f, CorrespondenceMap2To1) const {
      
      // Print (sub)graph isomorphism map
      BGL_FORALL_VERTICES_T(v, graph1_, Graph1) 
        std::cout << '(' << get(vertex_index_t(), graph1_, v) << ", " 
                  << get(vertex_index_t(), graph2_, get(f, v)) << ") ";
      
      std::cout << std::endl;
      
      return true;
    }
    
  private:
    const Graph1& graph1_;
    const Graph2& graph2_;
  };
  
  namespace detail {
    
    // State associated with a single graph (graph_this)
    template<typename GraphThis,
             typename GraphOther,
             typename IndexMapThis,
             typename IndexMapOther>
    class base_state {
      
      typedef typename graph_traits<GraphThis>::vertex_descriptor vertex_this_type;
      typedef typename graph_traits<GraphOther>::vertex_descriptor vertex_other_type;
      
      typedef typename graph_traits<GraphThis>::vertices_size_type size_type;
      
      const GraphThis& graph_this_;
      const GraphOther& graph_other_;
      
      IndexMapThis index_map_this_;
      IndexMapOther index_map_other_;
      
      std::vector<vertex_other_type> core_vec_;
      typedef iterator_property_map<typename std::vector<vertex_other_type>::iterator,
                                    IndexMapThis, vertex_other_type, 
                                    vertex_other_type&> core_map_type;
      core_map_type core_;
    
      std::vector<size_type> in_vec_, out_vec_;
      typedef iterator_property_map<typename std::vector<size_type>::iterator,
                                    IndexMapThis, size_type, size_type&> in_out_map_type;
      in_out_map_type in_, out_;

      size_type term_in_count_, term_out_count_, term_both_count_, core_count_;

      // Forbidden 
      base_state(const base_state&);
      base_state& operator=(const base_state&);

    public:

      base_state(const GraphThis& graph_this, const GraphOther& graph_other,
                 IndexMapThis index_map_this, IndexMapOther index_map_other)
        : graph_this_(graph_this), graph_other_(graph_other), 
          index_map_this_(index_map_this), index_map_other_(index_map_other), 
          term_in_count_(0), term_out_count_(0), term_both_count_(0), core_count_(0) {

        core_vec_.resize(num_vertices(graph_this_), graph_traits<GraphOther>::null_vertex());
        core_ = make_iterator_property_map(core_vec_.begin(), index_map_this_);

        in_vec_.resize(num_vertices(graph_this_), 0);
        in_ = make_iterator_property_map(in_vec_.begin(), index_map_this_);

        out_vec_.resize(num_vertices(graph_this_), 0);
        out_ = make_iterator_property_map(out_vec_.begin(), index_map_this_);
      }

      // Adds a vertex pair to the state of graph graph_this
      void push(const vertex_this_type& v_this, const vertex_other_type& v_other) {

        ++core_count_;

        put(core_, v_this, v_other);

        if (!get(in_, v_this)) {   
          put(in_, v_this, core_count_);
          ++term_in_count_;
          if (get(out_, v_this))
            ++term_both_count_;
        }

        if (!get(out_, v_this)) {   
          put(out_, v_this, core_count_);
          ++term_out_count_;
          if (get(in_, v_this))
            ++term_both_count_;
        }

        BGL_FORALL_INEDGES_T(v_this, e, graph_this_, GraphThis) {
          vertex_this_type w = source(e, graph_this_);
          if (!get(in_, w)) {
            put(in_, w, core_count_);
            ++term_in_count_;
            if (get(out_, w))
              ++term_both_count_;
          }
        }
        
        BGL_FORALL_OUTEDGES_T(v_this, e, graph_this_, GraphThis) {
          vertex_this_type w = target(e, graph_this_);
          if (!get(out_, w)) {
            put(out_, w, core_count_);
            ++term_out_count_;
            if (get(in_, w))
              ++term_both_count_;                        
          }
        }
        
      }

      // Removes vertex pair from state of graph_this
      void pop(const vertex_this_type& v_this, const vertex_other_type&) {
        
        if (!core_count_) return;
        
        if (get(in_, v_this) == core_count_) {
          put(in_, v_this, 0);
          --term_in_count_;
          if (get(out_, v_this))
            --term_both_count_;
        }

        BGL_FORALL_INEDGES_T(v_this, e, graph_this_, GraphThis) {
          vertex_this_type w = source(e, graph_this_);
          if (get(in_, w) == core_count_) {
            put(in_, w, 0);
            --term_in_count_;
            if (get(out_, w))
              --term_both_count_;
          }
        }

        if (get(out_, v_this) == core_count_) {
          put(out_, v_this, 0);
          --term_out_count_;
          if (get(in_, v_this))
            --term_both_count_;
        }

        BGL_FORALL_OUTEDGES_T(v_this, e, graph_this_, GraphThis) {
          vertex_this_type w = target(e, graph_this_);
          if (get(out_, w) == core_count_) {
            put(out_, w, 0);
            --term_out_count_;
            if (get(in_, w))
              --term_both_count_;
          }
        }
        put(core_, v_this, graph_traits<GraphOther>::null_vertex());

        --core_count_;
        
      }
            
      // Returns true if the in-terminal set is not empty  
      bool term_in() const {
        return core_count_ < term_in_count_ ;
      }

      // Returns true if vertex belongs to the in-terminal set
      bool term_in(const vertex_this_type& v) const {
        return (get(in_, v) > 0) &&
               (get(core_, v) == graph_traits<GraphOther>::null_vertex());
      }
            
      // Returns true if the out-terminal set is not empty  
      bool term_out() const {
        return core_count_ < term_out_count_;
      }

      // Returns true if vertex belongs to the out-terminal set
      bool term_out(const vertex_this_type& v) const {
        return (get(out_, v) > 0) && 
               (get(core_, v) == graph_traits<GraphOther>::null_vertex());
      }

      // Returns true of both (in- and out-terminal) sets are not empty
      bool term_both() const {
        return core_count_ < term_both_count_;
      }

      // Returns true if vertex belongs to both (in- and out-terminal) sets
      bool term_both(const vertex_this_type& v) const {
        return (get(in_, v) > 0) && (get(out_, v) > 0) && 
               (get(core_, v) == graph_traits<GraphOther>::null_vertex());
      }

      // Returns true if vertex belongs to the core map, i.e. it is in the 
      // present mapping
      bool in_core(const vertex_this_type& v) const {
        return get(core_, v) != graph_traits<GraphOther>::null_vertex();
      }

      // Returns the number of vertices in the mapping
      size_type count() const {
        return core_count_;
      }            

      // Returns the image (in graph_other) of vertex v (in graph_this)
      vertex_other_type core(const vertex_this_type& v) const {
        return get(core_, v);
      }

      // Returns the mapping
      core_map_type get_map() const {
        return core_;
      }

      // Returns the "time" (or depth) when vertex was added to the in-terminal set
      size_type in_depth(const vertex_this_type& v) const {
        return get(in_, v);
      }

      // Returns the "time" (or depth) when vertex was added to the out-terminal set
      size_type out_depth(const vertex_this_type& v) const {
        return get(out_, v);
      }            

      // Returns the terminal set counts
      boost::tuple<size_type, size_type, size_type>
      term_set() const {
        return boost::make_tuple(term_in_count_, term_out_count_, 
                                 term_both_count_);
      }
      
    };


    // Function object that checks whether a valid edge
    // exists. For multi-graphs matched edges are excluded  
    template <typename Graph, typename Enable = void>
    struct equivalent_edge_exists {
      typedef typename boost::graph_traits<Graph>::edge_descriptor edge_type;

      BOOST_CONCEPT_ASSERT(( LessThanComparable<edge_type> ));

      template<typename EdgePredicate>
      bool operator()(typename graph_traits<Graph>::vertex_descriptor s,
                      typename graph_traits<Graph>::vertex_descriptor t, 
                      EdgePredicate is_valid_edge, const Graph& g) {
        
        BGL_FORALL_OUTEDGES_T(s, e, g, Graph) {
          if ((target(e, g) == t) && is_valid_edge(e) && 
              (matched_edges_.find(e) == matched_edges_.end())) {
            matched_edges_.insert(e);
            return true;
          }
        }

        return false;
      }

    private:
      
      std::set<edge_type> matched_edges_;
    };
    
    template <typename Graph>
    struct equivalent_edge_exists<Graph, typename boost::disable_if<is_multigraph<Graph> >::type> {
      template<typename EdgePredicate>
      bool operator()(typename graph_traits<Graph>::vertex_descriptor s,
                      typename graph_traits<Graph>::vertex_descriptor t, 
                      EdgePredicate is_valid_edge, const Graph& g) {
        
        typename graph_traits<Graph>::edge_descriptor e;
        bool found;
        boost::tie(e, found) = edge(s, t, g);
        if (!found)
          return false;
        else if (is_valid_edge(e))
          return true;
        
        return false;
      }
      
    };


    // Generates a predicate for edge e1 given  a binary predicate and a 
    // fixed edge e2
    template <typename Graph1,
              typename Graph2,
              typename EdgeEquivalencePredicate>
    struct edge1_predicate {
      
      edge1_predicate(EdgeEquivalencePredicate edge_comp, 
                      typename graph_traits<Graph2>::edge_descriptor e2)
        : edge_comp_(edge_comp), e2_(e2) {}
      
      bool operator()(typename graph_traits<Graph1>::edge_descriptor e1) {
        return edge_comp_(e1, e2_);
      }

      EdgeEquivalencePredicate edge_comp_;
      typename graph_traits<Graph2>::edge_descriptor e2_;
    };


    // Generates a predicate for edge e2 given given a binary predicate and a
    // fixed edge e1
    template <typename Graph1,
              typename Graph2,
              typename EdgeEquivalencePredicate>
    struct edge2_predicate {
      
      edge2_predicate(EdgeEquivalencePredicate edge_comp, 
                      typename graph_traits<Graph1>::edge_descriptor e1)
        : edge_comp_(edge_comp), e1_(e1) {}

      bool operator()(typename graph_traits<Graph2>::edge_descriptor e2) {
        return edge_comp_(e1_, e2);
      }

      EdgeEquivalencePredicate edge_comp_;
      typename graph_traits<Graph1>::edge_descriptor e1_;
    };


    enum problem_selector {subgraph_mono, subgraph_iso, isomorphism };
    
    // The actual state associated with both graphs
    template<typename Graph1,
             typename Graph2,
             typename IndexMap1,
             typename IndexMap2,
             typename EdgeEquivalencePredicate,
             typename VertexEquivalencePredicate,
             typename SubGraphIsoMapCallback,
             problem_selector problem_selection>
    class state {

      typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_type;
      typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_type;

      typedef typename graph_traits<Graph1>::edge_descriptor edge1_type;
      typedef typename graph_traits<Graph2>::edge_descriptor edge2_type;

      typedef typename graph_traits<Graph1>::vertices_size_type graph1_size_type;
      typedef typename graph_traits<Graph2>::vertices_size_type graph2_size_type;

      const Graph1& graph1_;
      const Graph2& graph2_;
      
      IndexMap1 index_map1_;
      
      EdgeEquivalencePredicate edge_comp_;
      VertexEquivalencePredicate vertex_comp_;
                
      base_state<Graph1, Graph2, IndexMap1, IndexMap2> state1_;
      base_state<Graph2, Graph1, IndexMap2, IndexMap1> state2_;

      // Three helper functions used in Feasibility and Valid functions to test
      // terminal set counts when testing for:
      // - graph sub-graph monomorphism, or
      inline bool comp_term_sets(graph1_size_type a, 
                                 graph2_size_type b,
                                 boost::mpl::int_<subgraph_mono>) const {
        return a <= b;
      }

      // - graph sub-graph isomorphism, or
      inline bool comp_term_sets(graph1_size_type a, 
                                 graph2_size_type b,
                                 boost::mpl::int_<subgraph_iso>) const {
        return a <= b;
      }

      // - graph isomorphism
      inline bool comp_term_sets(graph1_size_type a, 
                                 graph2_size_type b,
                                 boost::mpl::int_<isomorphism>) const {
        return a == b;
      }
      
      // Forbidden 
      state(const state&);
      state& operator=(const state&);

    public:

      state(const Graph1& graph1, const Graph2& graph2, 
            IndexMap1 index_map1, IndexMap2 index_map2, 
            EdgeEquivalencePredicate edge_comp,
            VertexEquivalencePredicate vertex_comp)
        : graph1_(graph1), graph2_(graph2), 
          index_map1_(index_map1), 
          edge_comp_(edge_comp), vertex_comp_(vertex_comp),
          state1_(graph1, graph2, index_map1, index_map2), 
          state2_(graph2, graph1, index_map2, index_map1) {}
      
            // Add vertex pair to the state
      void push(const vertex1_type& v, const vertex2_type& w) {
        state1_.push(v, w);
        state2_.push(w, v);
      }
      
      // Remove vertex pair from state
      void pop(const vertex1_type& v, const vertex2_type&) {
        vertex2_type w = state1_.core(v);
        state1_.pop(v, w);
        state2_.pop(w, v);
      }
           
      // Checks the feasibility of a new vertex pair
      bool feasible(const vertex1_type& v_new, const vertex2_type& w_new) {
        
        if (!vertex_comp_(v_new, w_new)) return false;
        
        // graph1
        graph1_size_type term_in1_count = 0, term_out1_count = 0, rest1_count = 0;
        
        {
          equivalent_edge_exists<Graph2> edge2_exists;
          
          BGL_FORALL_INEDGES_T(v_new, e1, graph1_, Graph1) {
            vertex1_type v = source(e1, graph1_);
            
            if (state1_.in_core(v) || (v == v_new)) {
              vertex2_type w = w_new;
              if (v != v_new)
                w = state1_.core(v);
              if (!edge2_exists(w, w_new,
                                edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e1), 
                                graph2_))
                return false;
              
            } else {
              if (0 < state1_.in_depth(v))
                ++term_in1_count;
              if (0 < state1_.out_depth(v))
                ++term_out1_count;
              if ((state1_.in_depth(v) == 0) && (state1_.out_depth(v) == 0))
                ++rest1_count;
            }
          }
        }
        
        {
          equivalent_edge_exists<Graph2> edge2_exists;
          
          BGL_FORALL_OUTEDGES_T(v_new, e1, graph1_, Graph1) {
            vertex1_type v = target(e1, graph1_);
            if (state1_.in_core(v) || (v == v_new)) {
              vertex2_type w = w_new;
              if (v != v_new)
                w = state1_.core(v);
              
              if (!edge2_exists(w_new, w,
                                edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e1), 
                                graph2_))
                return false;
              
            } else {
              if (0 < state1_.in_depth(v))
                ++term_in1_count;
              if (0 < state1_.out_depth(v))
                ++term_out1_count;
              if ((state1_.in_depth(v) == 0) && (state1_.out_depth(v) == 0))
                ++rest1_count;
            }
          }
        }
        
        // graph2
        graph2_size_type term_out2_count = 0, term_in2_count = 0, rest2_count = 0;
        
        {
          equivalent_edge_exists<Graph1> edge1_exists;
          
          BGL_FORALL_INEDGES_T(w_new, e2, graph2_, Graph2) {
            vertex2_type w = source(e2, graph2_);
            if (state2_.in_core(w) || (w == w_new)) {
              if (problem_selection != subgraph_mono) {
                vertex1_type v = v_new;
                if (w != w_new)
                  v = state2_.core(w);
              
                if (!edge1_exists(v, v_new,
                                  edge1_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e2), 
                                  graph1_))
                  return false;
              }
            } else {
              if (0 < state2_.in_depth(w))
                ++term_in2_count;
              if (0 < state2_.out_depth(w))
                ++term_out2_count;
              if ((state2_.in_depth(w) == 0) && (state2_.out_depth(w) == 0))
                ++rest2_count;
            }
          }
        }

        {
          equivalent_edge_exists<Graph1> edge1_exists;
          
          BGL_FORALL_OUTEDGES_T(w_new, e2, graph2_, Graph2) {
            vertex2_type w = target(e2, graph2_);
            if (state2_.in_core(w) || (w == w_new)) {
              if (problem_selection != subgraph_mono) {
                vertex1_type v = v_new;
                if (w != w_new)
                  v = state2_.core(w);
              
                if (!edge1_exists(v_new, v,
                                  edge1_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e2), 
                                  graph1_))
                  return false;
              }
            } else {
              if (0 < state2_.in_depth(w))
                ++term_in2_count;
              if (0 < state2_.out_depth(w))
                ++term_out2_count;
              if ((state2_.in_depth(w) == 0) && (state2_.out_depth(w) == 0))
                ++rest2_count;
            }
          }
        }

        if (problem_selection != subgraph_mono) { // subgraph_iso and isomorphism
          return comp_term_sets(term_in1_count, term_in2_count,
                                boost::mpl::int_<problem_selection>()) &&
                 comp_term_sets(term_out1_count, term_out2_count, 
                                boost::mpl::int_<problem_selection>()) &&
                 comp_term_sets(rest1_count, rest2_count, 
                                boost::mpl::int_<problem_selection>());
        } else { // subgraph_mono
          return comp_term_sets(term_in1_count, term_in2_count,
                                boost::mpl::int_<problem_selection>()) &&
                 comp_term_sets(term_out1_count, term_out2_count, 
                                boost::mpl::int_<problem_selection>()) &&
                 comp_term_sets(term_in1_count + term_out1_count + rest1_count,
                                term_in2_count + term_out2_count + rest2_count, 
                                boost::mpl::int_<problem_selection>());
        }
      }
      
      // Returns true if vertex v in graph1 is a possible candidate to
      // be added to the current state
      bool possible_candidate1(const vertex1_type& v) const {
        if (state1_.term_both() && state2_.term_both()) 
          return state1_.term_both(v);
        else if (state1_.term_out() && state2_.term_out())
          return state1_.term_out(v);
        else if (state1_.term_in() && state2_.term_in())
          return state1_.term_in(v);
        else
          return !state1_.in_core(v);
      }

      // Returns true if vertex w in graph2 is a possible candidate to
      // be added to the current state
      bool possible_candidate2(const vertex2_type& w) const {
        if (state1_.term_both() && state2_.term_both()) 
          return state2_.term_both(w);
        else if (state1_.term_out() && state2_.term_out())
          return state2_.term_out(w);
        else if (state1_.term_in() && state2_.term_in())
          return state2_.term_in(w);
        else
          return !state2_.in_core(w);
      }

      // Returns true if a mapping was found
      bool success() const {
        return state1_.count() == num_vertices(graph1_);
      }
 
      // Returns true if a state is valid
      bool valid() const {
        boost::tuple<graph1_size_type, graph1_size_type, graph1_size_type> term1;
        boost::tuple<graph2_size_type, graph2_size_type, graph2_size_type> term2;
        
        term1 = state1_.term_set();
        term2 = state2_.term_set();
        
        return comp_term_sets(boost::get<0>(term1), boost::get<0>(term2),
                              boost::mpl::int_<problem_selection>()) &&
               comp_term_sets(boost::get<1>(term1), boost::get<1>(term2),
                              boost::mpl::int_<problem_selection>()) &&
               comp_term_sets(boost::get<2>(term1), boost::get<2>(term2),
                              boost::mpl::int_<problem_selection>()); 
      }
      
      // Calls the user_callback with a graph (sub)graph mapping 
      bool call_back(SubGraphIsoMapCallback user_callback) const {
        return user_callback(state1_.get_map(), state2_.get_map());
      }
      
    };

    
    // Data structure to keep info used for back tracking during
    // matching process
    template<typename Graph1,
             typename Graph2,
             typename VertexOrder1>
    struct vf2_match_continuation {
      typename VertexOrder1::const_iterator graph1_verts_iter;
      typename graph_traits<Graph2>::vertex_iterator graph2_verts_iter;
    };

    // Non-recursive method that explores state space using a depth-first
    // search strategy.  At each depth possible pairs candidate are compute
    // and tested for feasibility to extend the mapping. If a complete
    // mapping is found, the mapping is output to user_callback in the form
    // of a correspondence map (graph1 to graph2). Returning false from the
    // user_callback will terminate the search. Function match will return
    // true if the entire search space was explored.
    template<typename Graph1,
             typename Graph2,
             typename IndexMap1,
             typename IndexMap2,
             typename VertexOrder1,
             typename EdgeEquivalencePredicate,
             typename VertexEquivalencePredicate, 
             typename SubGraphIsoMapCallback,
             problem_selector problem_selection>
    bool match(const Graph1& graph1, const Graph2& graph2, 
               SubGraphIsoMapCallback user_callback, const VertexOrder1& vertex_order1, 
               state<Graph1, Graph2, IndexMap1, IndexMap2,
               EdgeEquivalencePredicate, VertexEquivalencePredicate,
               SubGraphIsoMapCallback, problem_selection>& s) {
      
      typename VertexOrder1::const_iterator graph1_verts_iter;

      typedef typename graph_traits<Graph2>::vertex_iterator vertex2_iterator_type;
      vertex2_iterator_type graph2_verts_iter, graph2_verts_iter_end;
    
      typedef vf2_match_continuation<Graph1, Graph2, VertexOrder1> match_continuation_type;
      std::vector<match_continuation_type> k;
      bool found_match = false;
  
      recur:
      if (s.success()) {
        if (!s.call_back(user_callback)) 
          return true;
        found_match = true;

        goto back_track;
      }
 
      if (!s.valid())
        goto back_track;

      graph1_verts_iter = vertex_order1.begin();
      while (graph1_verts_iter != vertex_order1.end() && 
             !s.possible_candidate1(*graph1_verts_iter)) {
        ++graph1_verts_iter;
      }

      boost::tie(graph2_verts_iter, graph2_verts_iter_end) = vertices(graph2);
      while (graph2_verts_iter != graph2_verts_iter_end) {
        if (s.possible_candidate2(*graph2_verts_iter)) {
          if (s.feasible(*graph1_verts_iter, *graph2_verts_iter)) {
            match_continuation_type kk;
            kk.graph1_verts_iter = graph1_verts_iter;
            kk.graph2_verts_iter = graph2_verts_iter;
            k.push_back(kk);
            
            s.push(*graph1_verts_iter, *graph2_verts_iter);
            goto recur;
          }
        }
        graph2_loop: ++graph2_verts_iter;
      }

      back_track:
      if (k.empty()) 
        return found_match;    
      
      const match_continuation_type kk = k.back();
      graph1_verts_iter = kk.graph1_verts_iter;
      graph2_verts_iter = kk.graph2_verts_iter;
      k.pop_back();
      
      s.pop(*graph1_verts_iter, *graph2_verts_iter);
      
      goto graph2_loop;
    }


    // Used to sort nodes by in/out degrees
    template<typename Graph>
    struct vertex_in_out_degree_cmp {
      typedef typename graph_traits<Graph>::vertex_descriptor vertex_type;

      vertex_in_out_degree_cmp(const Graph& graph)
        : graph_(graph) {}

      bool operator()(const vertex_type& v, const vertex_type& w) const {
        // lexicographical comparison
        return std::make_pair(in_degree(v, graph_), out_degree(v, graph_)) <
               std::make_pair(in_degree(w, graph_), out_degree(w, graph_));
      }

      const Graph& graph_;
    };


    // Used to sort nodes by multiplicity of in/out degrees
    template<typename Graph,
             typename FrequencyMap>
    struct vertex_frequency_degree_cmp {
      typedef typename graph_traits<Graph>::vertex_descriptor vertex_type;
      
      vertex_frequency_degree_cmp(const Graph& graph, FrequencyMap freq)
        : graph_(graph), freq_(freq) {}
      
      bool operator()(const vertex_type& v, const vertex_type& w) const {
        // lexicographical comparison
        return std::make_pair(freq_[v], in_degree(v, graph_)+out_degree(v, graph_)) <
               std::make_pair(freq_[w], in_degree(w, graph_)+out_degree(w, graph_));
      }

      const Graph& graph_;
      FrequencyMap freq_;
    };

    
    // Sorts vertices of a graph by multiplicity of in/out degrees 
    template<typename Graph,
             typename IndexMap,
             typename VertexOrder>
    void sort_vertices(const Graph& graph, IndexMap index_map, VertexOrder& order) {
      typedef typename graph_traits<Graph>::vertices_size_type size_type;

      boost::range::sort(order, vertex_in_out_degree_cmp<Graph>(graph));

      std::vector<size_type> freq_vec(num_vertices(graph), 0);
      typedef iterator_property_map<typename std::vector<size_type>::iterator,
                                    IndexMap, size_type, size_type&> frequency_map_type;
                
      frequency_map_type freq = make_iterator_property_map(freq_vec.begin(), index_map);

      typedef typename VertexOrder::iterator order_iterator;

      for (order_iterator order_iter = order.begin(); order_iter != order.end(); ) {
        size_type count = 0;
        for (order_iterator count_iter = order_iter;
             (count_iter != order.end()) &&
             (in_degree(*order_iter, graph) == in_degree(*count_iter, graph)) &&
             (out_degree(*order_iter, graph) == out_degree(*count_iter, graph)); 
             ++count_iter)
          ++count;
      
        for (size_type i = 0; i < count; ++i) {
          freq[*order_iter] = count;
          ++order_iter;
        }
      }

      boost::range::sort(order, vertex_frequency_degree_cmp<Graph, frequency_map_type>(graph, freq));

    }

    // Enumerates all graph sub-graph mono-/iso-morphism mappings between graphs
    // graph_small and graph_large. Continues until user_callback returns true or the
    // search space has been fully explored.
    template <problem_selector problem_selection,
              typename GraphSmall,
              typename GraphLarge,
              typename IndexMapSmall,
              typename IndexMapLarge,
              typename VertexOrderSmall,
              typename EdgeEquivalencePredicate,
              typename VertexEquivalencePredicate,
              typename SubGraphIsoMapCallback>
    bool vf2_subgraph_morphism(const GraphSmall& graph_small, const GraphLarge& graph_large,
                          SubGraphIsoMapCallback user_callback,
                          IndexMapSmall index_map_small, IndexMapLarge index_map_large, 
                          const VertexOrderSmall& vertex_order_small,
                          EdgeEquivalencePredicate edge_comp,
                          VertexEquivalencePredicate vertex_comp) {

      // Graph requirements
      BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<GraphSmall> ));
      BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<GraphSmall> ));
      BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<GraphSmall> ));
      BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<GraphSmall> ));

      BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<GraphLarge> ));
      BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<GraphLarge> ));
      BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<GraphLarge> ));
      BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<GraphLarge> ));

      typedef typename graph_traits<GraphSmall>::vertex_descriptor vertex_small_type;
      typedef typename graph_traits<GraphLarge>::vertex_descriptor vertex_large_type;

      typedef typename graph_traits<GraphSmall>::vertices_size_type size_type_small;
      typedef typename graph_traits<GraphLarge>::vertices_size_type size_type_large;
        
      // Property map requirements
      BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMapSmall, vertex_small_type> ));
      typedef typename property_traits<IndexMapSmall>::value_type IndexMapSmallValue;
      BOOST_STATIC_ASSERT(( is_convertible<IndexMapSmallValue, size_type_small>::value ));
        
      BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMapLarge, vertex_large_type> ));
      typedef typename property_traits<IndexMapLarge>::value_type IndexMapLargeValue;
      BOOST_STATIC_ASSERT(( is_convertible<IndexMapLargeValue, size_type_large>::value ));

      // Edge & vertex requirements
      typedef typename graph_traits<GraphSmall>::edge_descriptor edge_small_type;
      typedef typename graph_traits<GraphLarge>::edge_descriptor edge_large_type;

      BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<EdgeEquivalencePredicate, 
                             edge_small_type, edge_large_type> ));

      BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<VertexEquivalencePredicate, 
                             vertex_small_type, vertex_large_type> ));

      // Vertex order requirements
      BOOST_CONCEPT_ASSERT(( ContainerConcept<VertexOrderSmall> )); 
      typedef typename VertexOrderSmall::value_type order_value_type;
      BOOST_STATIC_ASSERT(( is_same<vertex_small_type, order_value_type>::value ));
      BOOST_ASSERT( num_vertices(graph_small) == vertex_order_small.size() );

      if (num_vertices(graph_small) > num_vertices(graph_large))
        return false;

      typename graph_traits<GraphSmall>::edges_size_type num_edges_small = num_edges(graph_small);
      typename graph_traits<GraphLarge>::edges_size_type num_edges_large = num_edges(graph_large);

      // Double the number of edges for undirected graphs: each edge counts as
      // in-edge and out-edge
      if (is_undirected(graph_small)) num_edges_small *= 2;
      if (is_undirected(graph_large)) num_edges_large *= 2;
      if (num_edges_small > num_edges_large)
        return false;
    
      detail::state<GraphSmall, GraphLarge, IndexMapSmall, IndexMapLarge,
                    EdgeEquivalencePredicate, VertexEquivalencePredicate,
                    SubGraphIsoMapCallback, problem_selection> 
        s(graph_small, graph_large, index_map_small, index_map_large, edge_comp, vertex_comp);

      return detail::match(graph_small, graph_large, user_callback, vertex_order_small, s);
    }

  } // namespace detail


  // Returns vertex order (vertices sorted by multiplicity of in/out degrees)
  template<typename Graph>
  std::vector<typename graph_traits<Graph>::vertex_descriptor> 
    vertex_order_by_mult(const Graph& graph) {

    std::vector<typename graph_traits<Graph>::vertex_descriptor> vertex_order;
    std::copy(vertices(graph).first, vertices(graph).second, std::back_inserter(vertex_order));

    detail::sort_vertices(graph, get(vertex_index, graph), vertex_order);
    return vertex_order;
  }


  // Enumerates all graph sub-graph monomorphism mappings between graphs
  // graph_small and graph_large. Continues until user_callback returns true or the
  // search space has been fully explored.
  template <typename GraphSmall,
            typename GraphLarge,
            typename IndexMapSmall,
            typename IndexMapLarge,
            typename VertexOrderSmall,
            typename EdgeEquivalencePredicate,
            typename VertexEquivalencePredicate,
            typename SubGraphIsoMapCallback>
  bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large,
                         SubGraphIsoMapCallback user_callback,
                         IndexMapSmall index_map_small, IndexMapLarge index_map_large, 
                         const VertexOrderSmall& vertex_order_small,
                         EdgeEquivalencePredicate edge_comp,
                         VertexEquivalencePredicate vertex_comp) {
    return detail::vf2_subgraph_morphism<detail::subgraph_mono>
                                        (graph_small, graph_large,
                                         user_callback,
                                         index_map_small, index_map_large,
                                         vertex_order_small,
                                         edge_comp,
                                         vertex_comp);
  }


  // All default interface for vf2_subgraph_iso
  template <typename GraphSmall,
            typename GraphLarge,
            typename SubGraphIsoMapCallback>
  bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large, 
                         SubGraphIsoMapCallback user_callback) {
    return vf2_subgraph_mono(graph_small, graph_large, user_callback, 
                             get(vertex_index, graph_small), get(vertex_index, graph_large),
                             vertex_order_by_mult(graph_small),
                             always_equivalent(), always_equivalent());
  }


  // Named parameter interface of vf2_subgraph_iso
  template <typename GraphSmall,
            typename GraphLarge,
            typename VertexOrderSmall,
            typename SubGraphIsoMapCallback,
            typename Param,
            typename Tag,
            typename Rest>
  bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large,
                         SubGraphIsoMapCallback user_callback,
                         const VertexOrderSmall& vertex_order_small,
                         const bgl_named_params<Param, Tag, Rest>& params) {
    return vf2_subgraph_mono(graph_small, graph_large, user_callback,
                             choose_const_pmap(get_param(params, vertex_index1),
                                               graph_small, vertex_index),
                             choose_const_pmap(get_param(params, vertex_index2),
                                               graph_large, vertex_index),
                             vertex_order_small,
                             choose_param(get_param(params, edges_equivalent_t()),
                                          always_equivalent()),
                             choose_param(get_param(params, vertices_equivalent_t()),
                                          always_equivalent())
                             );
  }
  
  
  // Enumerates all graph sub-graph isomorphism mappings between graphs
  // graph_small and graph_large. Continues until user_callback returns true or the
  // search space has been fully explored.
  template <typename GraphSmall,
            typename GraphLarge,
            typename IndexMapSmall,
            typename IndexMapLarge,
            typename VertexOrderSmall,
            typename EdgeEquivalencePredicate,
            typename VertexEquivalencePredicate,
            typename SubGraphIsoMapCallback>
  bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large,
                        SubGraphIsoMapCallback user_callback,
                        IndexMapSmall index_map_small, IndexMapLarge index_map_large, 
                        const VertexOrderSmall& vertex_order_small,
                        EdgeEquivalencePredicate edge_comp,
                        VertexEquivalencePredicate vertex_comp) {
    return detail::vf2_subgraph_morphism<detail::subgraph_iso>
                                        (graph_small, graph_large,
                                         user_callback,
                                         index_map_small, index_map_large,
                                         vertex_order_small,
                                         edge_comp,
                                         vertex_comp);
  }


  // All default interface for vf2_subgraph_iso
  template <typename GraphSmall,
            typename GraphLarge,
            typename SubGraphIsoMapCallback>
  bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large, 
                        SubGraphIsoMapCallback user_callback) {

    return vf2_subgraph_iso(graph_small, graph_large, user_callback, 
                            get(vertex_index, graph_small), get(vertex_index, graph_large),
                            vertex_order_by_mult(graph_small),
                            always_equivalent(), always_equivalent());
  }


  // Named parameter interface of vf2_subgraph_iso
  template <typename GraphSmall,
            typename GraphLarge,
            typename VertexOrderSmall,
            typename SubGraphIsoMapCallback,
            typename Param,
            typename Tag,
            typename Rest>
  bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large,
                        SubGraphIsoMapCallback user_callback,
                        const VertexOrderSmall& vertex_order_small,
                        const bgl_named_params<Param, Tag, Rest>& params) {
    
    return vf2_subgraph_iso(graph_small, graph_large, user_callback,
                            choose_const_pmap(get_param(params, vertex_index1),
                                              graph_small, vertex_index),
                            choose_const_pmap(get_param(params, vertex_index2),
                                              graph_large, vertex_index),
                            vertex_order_small,
                            choose_param(get_param(params, edges_equivalent_t()),
                                         always_equivalent()),
                            choose_param(get_param(params, vertices_equivalent_t()),
                                         always_equivalent())
                            );

  }


  // Enumerates all isomorphism mappings between graphs graph1_ and graph2_.
  // Continues until user_callback returns true or the search space has been
  // fully explored.
  template <typename Graph1,
            typename Graph2,
            typename IndexMap1,
            typename IndexMap2,
            typename VertexOrder1,
            typename EdgeEquivalencePredicate,
            typename VertexEquivalencePredicate,
            typename GraphIsoMapCallback>
  bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2,
                     GraphIsoMapCallback user_callback,
                     IndexMap1 index_map1, IndexMap2 index_map2, 
                     const VertexOrder1& vertex_order1,
                     EdgeEquivalencePredicate edge_comp,
                     VertexEquivalencePredicate vertex_comp) {

    // Graph requirements
    BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph1> ));

    BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
    BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
    BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph2> ));
    BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph2> ));
 
        
    typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_type;
    typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_type;
    
    typedef typename graph_traits<Graph1>::vertices_size_type size_type1;
    typedef typename graph_traits<Graph2>::vertices_size_type size_type2;
        
    // Property map requirements
    BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_type> ));
    typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
    BOOST_STATIC_ASSERT(( is_convertible<IndexMap1Value, size_type1>::value ));
        
    BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_type> ));
    typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
    BOOST_STATIC_ASSERT(( is_convertible<IndexMap2Value, size_type2>::value ));

    // Edge & vertex requirements
    typedef typename graph_traits<Graph1>::edge_descriptor edge1_type;
    typedef typename graph_traits<Graph2>::edge_descriptor edge2_type;

    BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<EdgeEquivalencePredicate, 
                           edge1_type, edge2_type> ));

    BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<VertexEquivalencePredicate, 
                           vertex1_type, vertex2_type> ));
    
    // Vertex order requirements
    BOOST_CONCEPT_ASSERT(( ContainerConcept<VertexOrder1> )); 
    typedef typename VertexOrder1::value_type order_value_type;
    BOOST_STATIC_ASSERT(( is_same<vertex1_type, order_value_type>::value ));
    BOOST_ASSERT( num_vertices(graph1) == vertex_order1.size() );

    if (num_vertices(graph1) != num_vertices(graph2))
      return false;

    typename graph_traits<Graph1>::edges_size_type num_edges1 = num_edges(graph1);
    typename graph_traits<Graph2>::edges_size_type num_edges2 = num_edges(graph2);

    // Double the number of edges for undirected graphs: each edge counts as
    // in-edge and out-edge
    if (is_undirected(graph1)) num_edges1 *= 2;
    if (is_undirected(graph2)) num_edges2 *= 2;
    if (num_edges1 != num_edges2)
      return false;

    detail::state<Graph1, Graph2, IndexMap1, IndexMap2,
                  EdgeEquivalencePredicate, VertexEquivalencePredicate,
                  GraphIsoMapCallback, detail::isomorphism> 
      s(graph1, graph2, index_map1, index_map2, edge_comp, vertex_comp);

    return detail::match(graph1, graph2, user_callback, vertex_order1, s);
  }


  // All default interface for vf2_graph_iso
  template <typename Graph1,
            typename Graph2,
            typename GraphIsoMapCallback>
  bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2, 
                     GraphIsoMapCallback user_callback) {
    
    return vf2_graph_iso(graph1, graph2, user_callback, 
                         get(vertex_index, graph1), get(vertex_index, graph2),
                         vertex_order_by_mult(graph1),
                         always_equivalent(), always_equivalent());
  }


  // Named parameter interface of vf2_graph_iso
  template <typename Graph1,
            typename Graph2,
            typename VertexOrder1,
            typename GraphIsoMapCallback,
            typename Param,
            typename Tag,
            typename Rest>
  bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2,
                     GraphIsoMapCallback user_callback,
                     const VertexOrder1& vertex_order1,
                     const bgl_named_params<Param, Tag, Rest>& params) {
    
    return vf2_graph_iso(graph1, graph2, user_callback,
                         choose_const_pmap(get_param(params, vertex_index1),
                                           graph1, vertex_index),
                         choose_const_pmap(get_param(params, vertex_index2),
                                           graph2, vertex_index),
                         vertex_order1,
                         choose_param(get_param(params, edges_equivalent_t()),
                                always_equivalent()),
                         choose_param(get_param(params, vertices_equivalent_t()),
                                      always_equivalent())
                         );

  }


  // Verifies a graph (sub)graph isomorphism map 
  template<typename Graph1,
           typename Graph2,
           typename CorresponenceMap1To2,
           typename EdgeEquivalencePredicate,
           typename VertexEquivalencePredicate>
  inline bool verify_vf2_subgraph_iso(const Graph1& graph1, const Graph2& graph2, 
                                      const CorresponenceMap1To2 f,
                                      EdgeEquivalencePredicate edge_comp, 
                                      VertexEquivalencePredicate vertex_comp) {
        
    BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
    BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph2> ));

    detail::equivalent_edge_exists<Graph2> edge2_exists;

    BGL_FORALL_EDGES_T(e1, graph1, Graph1) {
      typename graph_traits<Graph1>::vertex_descriptor s1, t1;
      typename graph_traits<Graph2>::vertex_descriptor s2, t2;
      
      s1 = source(e1, graph1); t1 = target(e1, graph1);
      s2 = get(f, s1); t2 = get(f, t1);
      
      if (!vertex_comp(s1, s2) || !vertex_comp(t1, t2))
        return false;

      typename graph_traits<Graph2>::edge_descriptor e2;
      
      if (!edge2_exists(s2, t2,
                        detail::edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp, e1), 
                        graph2))
        return false;
      
    }
  
    return true;
  }

  // Variant of verify_subgraph_iso with all default parameters
  template<typename Graph1,
           typename Graph2,
           typename CorresponenceMap1To2>
  inline bool verify_vf2_subgraph_iso(const Graph1& graph1, const Graph2& graph2, 
                                      const CorresponenceMap1To2 f) {
    return verify_vf2_subgraph_iso(graph1, graph2, f, 
                                   always_equivalent(), always_equivalent());
  }



} // namespace boost

#ifdef BOOST_ISO_INCLUDED_ITER_MACROS
#undef BOOST_ISO_INCLUDED_ITER_MACROS
#include <boost/graph/iteration_macros_undef.hpp>
#endif

#endif // BOOST_VF2_SUB_GRAPH_ISO_HPP