1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
// Copyright (C) 2004-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Brian Barrett
// Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_PARALLEL_CC_PS_HPP
#define BOOST_GRAPH_PARALLEL_CC_PS_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/assert.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/overloading.hpp>
#include <boost/graph/distributed/concepts.hpp>
#include <boost/graph/parallel/properties.hpp>
#include <boost/graph/parallel/process_group.hpp>
#include <boost/optional.hpp>
#include <algorithm>
#include <vector>
#include <queue>
#include <limits>
#include <map>
#include <boost/graph/parallel/container_traits.hpp>
#include <boost/graph/iteration_macros.hpp>
// Connected components algorithm based on a parallel search.
//
// Every N nodes starts a parallel search from the first vertex in
// their local vertex list during the first superstep (the other nodes
// remain idle during the first superstep to reduce the number of
// conflicts in numbering the components). At each superstep, all new
// component mappings from remote nodes are handled. If there is no
// work from remote updates, a new vertex is removed from the local
// list and added to the work queue.
//
// Components are allocated from the component_value_allocator object,
// which ensures that a given component number is unique in the
// system, currently by using the rank and number of processes to
// stride allocations.
//
// When two components are discovered to actually be the same
// component, a mapping is created in the collisions object. The
// lower component number is prefered in the resolution, so component
// numbering resolution is consistent. After the search has exhausted
// all vertices in the graph, the mapping is shared with all
// processes, and they independently resolve the comonent mapping (so
// O((N * NP) + (V * NP)) work, in O(N + V) time, where N is the
// number of mappings and V is the number of local vertices). This
// phase can likely be significantly sped up if a clever algorithm for
// the reduction can be found.
namespace boost { namespace graph { namespace distributed {
namespace cc_ps_detail {
// Local object for allocating component numbers. There are two
// places this happens in the code, and I was getting sick of them
// getting out of sync. Components are not tightly packed in
// numbering, but are numbered to ensure each rank has its own
// independent sets of numberings.
template<typename component_value_type>
class component_value_allocator {
public:
component_value_allocator(int num, int size) :
last(0), num(num), size(size)
{
}
component_value_type allocate(void)
{
component_value_type ret = num + (last * size);
last++;
return ret;
}
private:
component_value_type last;
int num;
int size;
};
// Map of the "collisions" between component names in the global
// component mapping. TO make cleanup easier, component numbers
// are added, pointing to themselves, when a new component is
// found. In order to make the results deterministic, the lower
// component number is always taken. The resolver will drill
// through the map until it finds a component entry that points to
// itself as the next value, allowing some cleanup to happen at
// update() time. Attempts are also made to update the mapping
// when new entries are created.
//
// Note that there's an assumption that the entire mapping is
// shared during the end of the algorithm, but before component
// name resolution.
template<typename component_value_type>
class collision_map {
public:
collision_map() : num_unique(0)
{
}
// add new component mapping first time component is used. Own
// function only so that we can sanity check there isn't already
// a mapping for that component number (which would be bad)
void add(const component_value_type &a)
{
BOOST_ASSERT(collisions.count(a) == 0);
collisions[a] = a;
}
// add a mapping between component values saying they're the
// same component
void add(const component_value_type &a, const component_value_type &b)
{
component_value_type high, low, tmp;
if (a > b) {
high = a;
low = b;
} else {
high = b;
low = a;
}
if (collisions.count(high) != 0 && collisions[high] != low) {
tmp = collisions[high];
if (tmp > low) {
collisions[tmp] = low;
collisions[high] = low;
} else {
collisions[low] = tmp;
collisions[high] = tmp;
}
} else {
collisions[high] = low;
}
}
// get the "real" component number for the given component.
// Used to resolve mapping at end of run.
component_value_type update(component_value_type a)
{
BOOST_ASSERT(num_unique > 0);
BOOST_ASSERT(collisions.count(a) != 0);
return collisions[a];
}
// collapse the collisions tree, so that update is a one lookup
// operation. Count unique components at the same time.
void uniqify(void)
{
typename std::map<component_value_type, component_value_type>::iterator i, end;
end = collisions.end();
for (i = collisions.begin() ; i != end ; ++i) {
if (i->first == i->second) {
num_unique++;
} else {
i->second = collisions[i->second];
}
}
}
// get the number of component entries that have an associated
// component number of themselves, which are the real components
// used in the final mapping. This is the number of unique
// components in the graph.
int unique(void)
{
BOOST_ASSERT(num_unique > 0);
return num_unique;
}
// "serialize" into a vector for communication.
std::vector<component_value_type> serialize(void)
{
std::vector<component_value_type> ret;
typename std::map<component_value_type, component_value_type>::iterator i, end;
end = collisions.end();
for (i = collisions.begin() ; i != end ; ++i) {
ret.push_back(i->first);
ret.push_back(i->second);
}
return ret;
}
private:
std::map<component_value_type, component_value_type> collisions;
int num_unique;
};
// resolver to handle remote updates. The resolver will add
// entries into the collisions map if required, and if it is the
// first time the vertex has been touched, it will add the vertex
// to the remote queue. Note that local updates are handled
// differently, in the main loop (below).
// BWB - FIX ME - don't need graph anymore - can pull from key value of Component Map.
template<typename ComponentMap, typename work_queue>
struct update_reducer {
BOOST_STATIC_CONSTANT(bool, non_default_resolver = false);
typedef typename property_traits<ComponentMap>::value_type component_value_type;
typedef typename property_traits<ComponentMap>::key_type vertex_descriptor;
update_reducer(work_queue *q,
cc_ps_detail::collision_map<component_value_type> *collisions,
processor_id_type pg_id) :
q(q), collisions(collisions), pg_id(pg_id)
{
}
// ghost cell initialization routine. This should never be
// called in this imlementation.
template<typename K>
component_value_type operator()(const K&) const
{
return component_value_type(0);
}
// resolver for remote updates. I'm not entirely sure why, but
// I decided to not change the value of the vertex if it's
// already non-infinite. It doesn't matter in the end, as we'll
// touch every vertex in the cleanup phase anyway. If the
// component is currently infinite, set to the new component
// number and add the vertex to the work queue. If it's not
// infinite, we've touched it already so don't add it to the
// work queue. Do add a collision entry so that we know the two
// components are the same.
component_value_type operator()(const vertex_descriptor &v,
const component_value_type& current,
const component_value_type& update) const
{
const component_value_type max = (std::numeric_limits<component_value_type>::max)();
component_value_type ret = current;
if (max == current) {
q->push(v);
ret = update;
} else if (current != update) {
collisions->add(current, update);
}
return ret;
}
// So for whatever reason, the property map can in theory call
// the resolver with a local descriptor in addition to the
// standard global descriptor. As far as I can tell, this code
// path is never taken in this implementation, but I need to
// have this code here to make it compile. We just make a
// global descriptor and call the "real" operator().
template<typename K>
component_value_type operator()(const K& v,
const component_value_type& current,
const component_value_type& update) const
{
return (*this)(vertex_descriptor(pg_id, v), current, update);
}
private:
work_queue *q;
collision_map<component_value_type> *collisions;
boost::processor_id_type pg_id;
};
} // namespace cc_ps_detail
template<typename Graph, typename ComponentMap>
typename property_traits<ComponentMap>::value_type
connected_components_ps(const Graph& g, ComponentMap c)
{
using boost::graph::parallel::process_group;
typedef typename property_traits<ComponentMap>::value_type component_value_type;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph::parallel::process_group_type<Graph>
::type process_group_type;
typedef typename process_group_type::process_id_type process_id_type;
typedef std::queue<vertex_descriptor> work_queue;
static const component_value_type max_component =
(std::numeric_limits<component_value_type>::max)();
typename property_map<Graph, vertex_owner_t>::const_type
owner = get(vertex_owner, g);
// standard who am i? stuff
process_group_type pg = process_group(g);
process_id_type id = process_id(pg);
// Initialize every vertex to have infinite component number
BGL_FORALL_VERTICES_T(v, g, Graph) put(c, v, max_component);
vertex_iterator current, end;
boost::tie(current, end) = vertices(g);
cc_ps_detail::component_value_allocator<component_value_type> cva(process_id(pg), num_processes(pg));
cc_ps_detail::collision_map<component_value_type> collisions;
work_queue q; // this is intentionally a local data structure
c.set_reduce(cc_ps_detail::update_reducer<ComponentMap, work_queue>(&q, &collisions, id));
// add starting work
while (true) {
bool useful_found = false;
component_value_type val = cva.allocate();
put(c, *current, val);
collisions.add(val);
q.push(*current);
if (0 != out_degree(*current, g)) useful_found = true;
++current;
if (useful_found) break;
}
// Run the loop until everyone in the system is done
bool global_done = false;
while (!global_done) {
// drain queue of work for this superstep
while (!q.empty()) {
vertex_descriptor v = q.front();
q.pop();
// iterate through outedges of the vertex currently being
// examined, setting their component to our component. There
// is no way to end up in the queue without having a component
// number already.
BGL_FORALL_ADJ_T(v, peer, g, Graph) {
component_value_type my_component = get(c, v);
// update other vertex with our component information.
// Resolver will handle remote collisions as well as whether
// to put the vertex on the work queue or not. We have to
// handle local collisions and work queue management
if (id == get(owner, peer)) {
if (max_component == get(c, peer)) {
put(c, peer, my_component);
q.push(peer);
} else if (my_component != get(c, peer)) {
collisions.add(my_component, get(c, peer));
}
} else {
put(c, peer, my_component);
}
}
}
// synchronize / start a new superstep.
synchronize(pg);
global_done = all_reduce(pg, (q.empty() && (current == end)), boost::parallel::minimum<bool>());
// If the queue is currently empty, add something to do to start
// the current superstep (supersteps start at the sync, not at
// the top of the while loop as one might expect). Down at the
// bottom of the while loop so that not everyone starts the
// algorithm with something to do, to try to reduce component
// name conflicts
if (q.empty()) {
bool useful_found = false;
for ( ; current != end && !useful_found ; ++current) {
if (max_component == get(c, *current)) {
component_value_type val = cva.allocate();
put(c, *current, val);
collisions.add(val);
q.push(*current);
if (0 != out_degree(*current, g)) useful_found = true;
}
}
}
}
// share component mappings
std::vector<component_value_type> global;
std::vector<component_value_type> mine = collisions.serialize();
all_gather(pg, mine.begin(), mine.end(), global);
for (size_t i = 0 ; i < global.size() ; i += 2) {
collisions.add(global[i], global[i + 1]);
}
collisions.uniqify();
// update the component mappings
BGL_FORALL_VERTICES_T(v, g, Graph) {
put(c, v, collisions.update(get(c, v)));
}
return collisions.unique();
}
} // end namespace distributed
} // end namespace graph
} // end namespace boost
#endif // BOOST_GRAPH_PARALLEL_CC_HPP
|