1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// Copyright (C) 2005-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP
#define BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/graph/fruchterman_reingold.hpp>
namespace boost { namespace graph { namespace distributed {
class simple_tiling
{
public:
simple_tiling(int columns, int rows, bool flip = true)
: columns(columns), rows(rows), flip(flip)
{
}
// Convert from a position (x, y) in the tiled display into a
// processor ID number
int operator()(int x, int y) const
{
return flip? (rows - y - 1) * columns + x : y * columns + x;
}
// Convert from a process ID to a position (x, y) in the tiled
// display
std::pair<int, int> operator()(int id)
{
int my_col = id % columns;
int my_row = flip? rows - (id / columns) - 1 : id / columns;
return std::make_pair(my_col, my_row);
}
int columns, rows;
private:
bool flip;
};
// Force pairs function object that does nothing
struct no_force_pairs
{
template<typename Graph, typename ApplyForce>
void operator()(const Graph&, const ApplyForce&)
{
}
};
// Computes force pairs in the distributed case.
template<typename PositionMap, typename DisplacementMap, typename LocalForces,
typename NonLocalForces = no_force_pairs>
class distributed_force_pairs_proxy
{
public:
distributed_force_pairs_proxy(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces,
const NonLocalForces& nonlocal_forces = NonLocalForces())
: position(position), displacement(displacement),
local_forces(local_forces), nonlocal_forces(nonlocal_forces)
{
}
template<typename Graph, typename ApplyForce>
void operator()(const Graph& g, ApplyForce apply_force)
{
// Flush remote displacements
displacement.flush();
// Receive updated positions for all of our neighbors
synchronize(position);
// Reset remote displacements
displacement.reset();
// Compute local repulsive forces
local_forces(g, apply_force);
// Compute neighbor repulsive forces
nonlocal_forces(g, apply_force);
}
protected:
PositionMap position;
DisplacementMap displacement;
LocalForces local_forces;
NonLocalForces nonlocal_forces;
};
template<typename PositionMap, typename DisplacementMap, typename LocalForces>
inline
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces>
make_distributed_force_pairs(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces)
{
typedef
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces>
result_type;
return result_type(position, displacement, local_forces);
}
template<typename PositionMap, typename DisplacementMap, typename LocalForces,
typename NonLocalForces>
inline
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces,
NonLocalForces>
make_distributed_force_pairs(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces,
const NonLocalForces& nonlocal_forces)
{
typedef
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces,
NonLocalForces>
result_type;
return result_type(position, displacement, local_forces, nonlocal_forces);
}
// Compute nonlocal force pairs based on the shared borders with
// adjacent tiles.
template<typename PositionMap>
class neighboring_tiles_force_pairs
{
public:
typedef typename property_traits<PositionMap>::value_type Point;
typedef typename point_traits<Point>::component_type Dim;
enum bucket_position { left, top, right, bottom, end_position };
neighboring_tiles_force_pairs(PositionMap position, Point origin,
Point extent, simple_tiling tiling)
: position(position), origin(origin), extent(extent), tiling(tiling)
{
}
template<typename Graph, typename ApplyForce>
void operator()(const Graph& g, ApplyForce apply_force)
{
// TBD: Do this some smarter way
if (tiling.columns == 1 && tiling.rows == 1)
return;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
#ifndef BOOST_NO_STDC_NAMESPACE
using std::sqrt;
#endif // BOOST_NO_STDC_NAMESPACE
// TBD: num_vertices(g) should be the global number of vertices?
Dim two_k = Dim(2) * sqrt(extent[0] * extent[1] / num_vertices(g));
std::vector<vertex_descriptor> my_vertices[4];
std::vector<vertex_descriptor> neighbor_vertices[4];
// Compute cutoff positions
Dim cutoffs[4];
cutoffs[left] = origin[0] + two_k;
cutoffs[top] = origin[1] + two_k;
cutoffs[right] = origin[0] + extent[0] - two_k;
cutoffs[bottom] = origin[1] + extent[1] - two_k;
// Compute neighbors
typename PositionMap::process_group_type pg = position.process_group();
std::pair<int, int> my_tile = tiling(process_id(pg));
int neighbors[4] = { -1, -1, -1, -1 } ;
if (my_tile.first > 0)
neighbors[left] = tiling(my_tile.first - 1, my_tile.second);
if (my_tile.second > 0)
neighbors[top] = tiling(my_tile.first, my_tile.second - 1);
if (my_tile.first < tiling.columns - 1)
neighbors[right] = tiling(my_tile.first + 1, my_tile.second);
if (my_tile.second < tiling.rows - 1)
neighbors[bottom] = tiling(my_tile.first, my_tile.second + 1);
// Sort vertices along the edges into buckets
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (position[v][0] <= cutoffs[left]) my_vertices[left].push_back(v);
if (position[v][1] <= cutoffs[top]) my_vertices[top].push_back(v);
if (position[v][0] >= cutoffs[right]) my_vertices[right].push_back(v);
if (position[v][1] >= cutoffs[bottom]) my_vertices[bottom].push_back(v);
}
// Send vertices to neighbors, and gather our neighbors' vertices
bucket_position pos;
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
if (neighbors[pos] != -1) {
send(pg, neighbors[pos], 0, my_vertices[pos].size());
if (!my_vertices[pos].empty())
send(pg, neighbors[pos], 1,
&my_vertices[pos].front(), my_vertices[pos].size());
}
}
// Pass messages around
synchronize(pg);
// Receive neighboring vertices
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
if (neighbors[pos] != -1) {
std::size_t incoming_vertices;
receive(pg, neighbors[pos], 0, incoming_vertices);
if (incoming_vertices) {
neighbor_vertices[pos].resize(incoming_vertices);
receive(pg, neighbors[pos], 1, &neighbor_vertices[pos].front(),
incoming_vertices);
}
}
}
// For each neighboring vertex, we need to get its current position
for (pos = left; pos < end_position; pos = bucket_position(pos + 1))
for (typename std::vector<vertex_descriptor>::iterator i =
neighbor_vertices[pos].begin();
i != neighbor_vertices[pos].end();
++i)
request(position, *i);
synchronize(position);
// Apply forces in adjacent bins. This is O(n^2) in the worst
// case. Oh well.
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
for (typename std::vector<vertex_descriptor>::iterator i =
my_vertices[pos].begin();
i != my_vertices[pos].end();
++i)
for (typename std::vector<vertex_descriptor>::iterator j =
neighbor_vertices[pos].begin();
j != neighbor_vertices[pos].end();
++j)
apply_force(*i, *j);
}
}
protected:
PositionMap position;
Point origin;
Point extent;
simple_tiling tiling;
};
template<typename PositionMap>
inline neighboring_tiles_force_pairs<PositionMap>
make_neighboring_tiles_force_pairs
(PositionMap position,
typename property_traits<PositionMap>::value_type origin,
typename property_traits<PositionMap>::value_type extent,
simple_tiling tiling)
{
return neighboring_tiles_force_pairs<PositionMap>(position, origin, extent,
tiling);
}
template<typename DisplacementMap, typename Cooling>
class distributed_cooling_proxy
{
public:
typedef typename Cooling::result_type result_type;
distributed_cooling_proxy(const DisplacementMap& displacement,
const Cooling& cooling)
: displacement(displacement), cooling(cooling)
{
}
result_type operator()()
{
// Accumulate displacements computed on each processor
synchronize(displacement.data->process_group);
// Allow the underlying cooling to occur
return cooling();
}
protected:
DisplacementMap displacement;
Cooling cooling;
};
template<typename DisplacementMap, typename Cooling>
inline distributed_cooling_proxy<DisplacementMap, Cooling>
make_distributed_cooling(const DisplacementMap& displacement,
const Cooling& cooling)
{
typedef distributed_cooling_proxy<DisplacementMap, Cooling> result_type;
return result_type(displacement, cooling);
}
template<typename Point>
struct point_accumulating_reducer {
BOOST_STATIC_CONSTANT(bool, non_default_resolver = true);
template<typename K>
Point operator()(const K&) const { return Point(); }
template<typename K>
Point operator()(const K&, const Point& p1, const Point& p2) const
{ return Point(p1[0] + p2[0], p1[1] + p2[1]); }
};
template<typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename DisplacementMap>
void
fruchterman_reingold_force_directed_layout
(const Graph& g,
PositionMap position,
typename property_traits<PositionMap>::value_type const& origin,
typename property_traits<PositionMap>::value_type const& extent,
AttractiveForce attractive_force,
RepulsiveForce repulsive_force,
ForcePairs force_pairs,
Cooling cool,
DisplacementMap displacement)
{
typedef typename property_traits<PositionMap>::value_type Point;
// Reduction in the displacement map involves summing the forces
displacement.set_reduce(point_accumulating_reducer<Point>());
// We need to track the positions of all of our neighbors
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
request(position, v);
// Invoke the "sequential" Fruchterman-Reingold implementation
boost::fruchterman_reingold_force_directed_layout
(g, position, origin, extent,
attractive_force, repulsive_force,
make_distributed_force_pairs(position, displacement, force_pairs),
make_distributed_cooling(displacement, cool),
displacement);
}
template<typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename DisplacementMap>
void
fruchterman_reingold_force_directed_layout
(const Graph& g,
PositionMap position,
typename property_traits<PositionMap>::value_type const& origin,
typename property_traits<PositionMap>::value_type const& extent,
AttractiveForce attractive_force,
RepulsiveForce repulsive_force,
ForcePairs force_pairs,
Cooling cool,
DisplacementMap displacement,
simple_tiling tiling)
{
typedef typename property_traits<PositionMap>::value_type Point;
// Reduction in the displacement map involves summing the forces
displacement.set_reduce(point_accumulating_reducer<Point>());
// We need to track the positions of all of our neighbors
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
request(position, v);
// Invoke the "sequential" Fruchterman-Reingold implementation
boost::fruchterman_reingold_force_directed_layout
(g, position, origin, extent,
attractive_force, repulsive_force,
make_distributed_force_pairs
(position, displacement, force_pairs,
make_neighboring_tiles_force_pairs(position, origin, extent, tiling)),
make_distributed_cooling(displacement, cool),
displacement);
}
} } } // end namespace boost::graph::distributed
#endif // BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP
|