1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Example showing Boost.Geometry combined with Boost.Graph, calculating shortest routes
// input: two WKT's, provided in subfolder data
// output: text, + an SVG, displayable in e.g. Firefox)
#include <iostream>
#include <fstream>
#include <iomanip>
#include <limits>
#include <boost/tuple/tuple.hpp>
#include <boost/foreach.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/geometry/geometry.hpp>
#include <boost/geometry/geometries/linestring.hpp>
#include <boost/geometry/io/wkt/read.hpp>
// For output:
#include <boost/geometry/io/svg/svg_mapper.hpp>
// For distance-calculations over the Earth:
//#include <boost/geometry/extensions/gis/geographic/strategies/andoyer.hpp>
// Read an ASCII file containing WKT's, fill a vector of tuples
// The tuples consist of at least <0> a geometry and <1> an identifying string
template <typename Geometry, typename Tuple, typename Box>
void read_wkt(std::string const& filename, std::vector<Tuple>& tuples, Box& box)
{
std::ifstream cpp_file(filename.c_str());
if (cpp_file.is_open())
{
while (! cpp_file.eof() )
{
std::string line;
std::getline(cpp_file, line);
Geometry geometry;
boost::trim(line);
if (! line.empty() && ! boost::starts_with(line, "#"))
{
std::string name;
// Split at ';', if any
std::string::size_type pos = line.find(";");
if (pos != std::string::npos)
{
name = line.substr(pos + 1);
line.erase(pos);
boost::trim(line);
boost::trim(name);
}
Geometry geometry;
boost::geometry::read_wkt(line, geometry);
Tuple tuple(geometry, name);
tuples.push_back(tuple);
boost::geometry::expand(box, boost::geometry::return_envelope<Box>(geometry));
}
}
}
}
// Code to define properties for Boost Graph's
enum vertex_bg_property_t { vertex_bg_property };
enum edge_bg_property_t { edge_bg_property };
namespace boost
{
BOOST_INSTALL_PROPERTY(vertex, bg_property);
BOOST_INSTALL_PROPERTY(edge, bg_property);
}
// To calculate distance, declare and construct a strategy with average earth radius
boost::geometry::strategy::distance::haversine<double> const haversine(6372795.0);
// Define properties for vertex
template <typename Point>
struct bg_vertex_property
{
bg_vertex_property()
{
boost::geometry::assign_zero(location);
}
bg_vertex_property(Point const& loc)
: location(loc)
{
}
Point location;
};
// Define properties for edge
template <typename Linestring>
struct bg_edge_property
{
bg_edge_property(Linestring const& line)
: m_length(boost::geometry::length(line, haversine))
, m_line(line)
{
}
inline operator double() const
{
return m_length;
}
inline Linestring const& line() const
{
return m_line;
}
private :
double m_length;
Linestring m_line;
};
// Utility function to add a vertex to a graph. It might exist already. Then do not insert,
// but return vertex descriptor back. It might not exist. Then add it (and return).
// To efficiently handle this, a std::map is used.
template <typename M, typename K, typename G>
inline typename boost::graph_traits<G>::vertex_descriptor find_or_insert(M& map, K const& key, G& graph)
{
typename M::const_iterator it = map.find(key);
if (it == map.end())
{
// Add a vertex to the graph
typename boost::graph_traits<G>::vertex_descriptor new_vertex
= boost::add_vertex(graph);
// Set the property (= location)
boost::put(boost::get(vertex_bg_property, graph), new_vertex,
bg_vertex_property<typename M::key_type>(key));
// Add to the map, using POINT as key
map[key] = new_vertex;
return new_vertex;
}
return it->second;
}
template
<
typename Graph,
typename RoadTupleVector,
typename CityTupleVector
>
void add_roads_and_connect_cities(Graph& graph,
RoadTupleVector const& roads,
CityTupleVector& cities)
{
typedef typename boost::range_value<RoadTupleVector>::type road_type;
typedef typename boost::tuples::element<0, road_type>::type line_type;
typedef typename boost::geometry::point_type<line_type>::type point_type;
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_type;
// Define a map to be used during graph filling
// Maps from point to vertex-id's
typedef std::map<point_type, vertex_type, boost::geometry::less<point_type> > map_type;
map_type map;
// Fill the graph
BOOST_FOREACH(road_type const& road, roads)
{
line_type const& line = road.template get<0>();
// Find or add begin/end point of these line
vertex_type from = find_or_insert(map, line.front(), graph);
vertex_type to = find_or_insert(map, line.back(), graph);
boost::add_edge(from, to, bg_edge_property<line_type>(line), graph);
}
// Find nearest graph vertex for each city, using the map
typedef typename boost::range_value<CityTupleVector>::type city_type;
BOOST_FOREACH(city_type& city, cities)
{
double min_distance = 1e300;
for(typename map_type::const_iterator it = map.begin(); it != map.end(); ++it)
{
double dist = boost::geometry::distance(it->first, city.template get<0>());
if (dist < min_distance)
{
min_distance = dist;
// Set the vertex
city.template get<2>() = it->second;
}
}
}
}
template <typename Graph, typename Route>
inline void add_edge_to_route(Graph const& graph,
typename boost::graph_traits<Graph>::vertex_descriptor vertex1,
typename boost::graph_traits<Graph>::vertex_descriptor vertex2,
Route& route)
{
std::pair
<
typename boost::graph_traits<Graph>::edge_descriptor,
bool
> opt_edge = boost::edge(vertex1, vertex2, graph);
if (opt_edge.second)
{
// Get properties of edge and of vertex
bg_edge_property<Route> const& edge_prop =
boost::get(boost::get(edge_bg_property, graph), opt_edge.first);
bg_vertex_property<typename boost::geometry::point_type<Route>::type> const& vertex_prop =
boost::get(boost::get(vertex_bg_property, graph), vertex2);
// Depending on how edge connects to vertex, copy it forward or backward
if (boost::geometry::equals(edge_prop.line().front(), vertex_prop.location))
{
std::copy(edge_prop.line().begin(), edge_prop.line().end(),
std::back_inserter(route));
}
else
{
std::reverse_copy(edge_prop.line().begin(), edge_prop.line().end(),
std::back_inserter(route));
}
}
}
template <typename Graph, typename Route>
inline void build_route(Graph const& graph,
std::vector<typename boost::graph_traits<Graph>::vertex_descriptor> const& predecessors,
typename boost::graph_traits<Graph>::vertex_descriptor vertex1,
typename boost::graph_traits<Graph>::vertex_descriptor vertex2,
Route& route)
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_type;
vertex_type pred = predecessors[vertex2];
add_edge_to_route(graph, vertex2, pred, route);
while (pred != vertex1)
{
add_edge_to_route(graph, predecessors[pred], pred, route);
pred = predecessors[pred];
}
}
int main()
{
// Define a point in the Geographic coordinate system (currently Spherical)
// (geographic calculations are in an extension; for sample it makes no difference)
typedef boost::geometry::model::point
<
double, 2, boost::geometry::cs::spherical_equatorial<boost::geometry::degree>
> point_type;
typedef boost::geometry::model::linestring<point_type> line_type;
// Define the graph, lateron containing the road network
typedef boost::adjacency_list
<
boost::vecS, boost::vecS, boost::undirectedS
, boost::property<vertex_bg_property_t, bg_vertex_property<point_type> >
, boost::property<edge_bg_property_t, bg_edge_property<line_type> >
> graph_type;
typedef boost::graph_traits<graph_type>::vertex_descriptor vertex_type;
// Init a bounding box, lateron used to define SVG map
boost::geometry::model::box<point_type> box;
boost::geometry::assign_inverse(box);
// Read the cities
typedef boost::tuple<point_type, std::string, vertex_type> city_type;
std::vector<city_type> cities;
read_wkt<point_type>("data/cities.wkt", cities, box);
// Read the road network
typedef boost::tuple<line_type, std::string> road_type;
std::vector<road_type> roads;
read_wkt<line_type>("data/roads.wkt", roads, box);
graph_type graph;
// Add roads and connect cities
add_roads_and_connect_cities(graph, roads, cities);
double const km = 1000.0;
std::cout << "distances, all in KM" << std::endl
<< std::fixed << std::setprecision(0);
// Main functionality: calculate shortest routes from/to all cities
// For the first one, the complete route is stored as a linestring
bool first = true;
line_type route;
int const n = boost::num_vertices(graph);
BOOST_FOREACH(city_type const& city1, cities)
{
std::vector<vertex_type> predecessors(n);
std::vector<double> costs(n);
// Call Dijkstra (without named-parameter to be compatible with all VC)
boost::dijkstra_shortest_paths(graph, city1.get<2>(),
&predecessors[0], &costs[0],
boost::get(edge_bg_property, graph),
boost::get(boost::vertex_index, graph),
std::less<double>(), std::plus<double>(),
(std::numeric_limits<double>::max)(), double(),
boost::dijkstra_visitor<boost::null_visitor>());
BOOST_FOREACH(city_type const& city2, cities)
{
if (! boost::equals(city1.get<1>(), city2.get<1>()))
{
double distance = costs[city2.get<2>()] / km;
double acof = boost::geometry::distance(city1.get<0>(), city2.get<0>(), haversine) / km;
std::cout
<< std::setiosflags (std::ios_base::left) << std::setw(15)
<< city1.get<1>() << " - "
<< std::setiosflags (std::ios_base::left) << std::setw(15)
<< city2.get<1>()
<< " -> through the air: " << std::setw(4) << acof
<< " , over the road: " << std::setw(4) << distance
<< std::endl;
if (first)
{
build_route(graph, predecessors,
city1.get<2>(), city2.get<2>(),
route);
first = false;
}
}
}
}
#if defined(HAVE_SVG)
// Create the SVG
std::ofstream stream("routes.svg");
boost::geometry::svg_mapper<point_type> mapper(stream, 600, 600);
// Map roads
BOOST_FOREACH(road_type const& road, roads)
{
mapper.add(road.get<0>());
}
BOOST_FOREACH(road_type const& road, roads)
{
mapper.map(road.get<0>(),
"stroke:rgb(128,128,128);stroke-width:1");
}
mapper.map(route,
"stroke:rgb(0, 255, 0);stroke-width:6;opacity:0.5");
// Map cities
BOOST_FOREACH(city_type const& city, cities)
{
mapper.map(city.get<0>(),
"fill:rgb(255,255,0);stroke:rgb(0,0,0);stroke-width:1");
mapper.text(city.get<0>(), city.get<1>(),
"fill:rgb(0,0,0);font-family:Arial;font-size:10px", 5, 5);
}
#endif
return 0;
}
|