1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <iomanip>
#include <vector>
#include <array>
#include <forward_list>
#include <algorithm>
#include <random>
#include <boost/core/lightweight_test.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/statistics/univariate_statistics.hpp>
#include <boost/math/statistics/bivariate_statistics.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_complex_50;
/*
* Test checklist:
* 1) Does it work with multiprecision?
* 2) Does it work with .cbegin()/.cend() if the data is not altered?
* 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
* 4) Does it work with std::forward_list if a forward iterator is all that is required?
* 5) Does it work with complex data if complex data is sensible?
*/
using boost::math::statistics::means_and_covariance;
using boost::math::statistics::covariance;
template<class Real>
void test_covariance()
{
std::cout << std::setprecision(std::numeric_limits<Real>::digits10+1);
Real tol = std::numeric_limits<Real>::epsilon();
using std::abs;
// Covariance of a single thing is zero:
std::array<Real, 1> u1{8};
std::array<Real, 1> v1{17};
auto [mu_u1, mu_v1, cov1] = means_and_covariance(u1, v1);
BOOST_TEST(abs(cov1) < tol);
BOOST_TEST(abs(mu_u1 - 8) < tol);
BOOST_TEST(abs(mu_v1 - 17) < tol);
std::array<Real, 2> u2{8, 4};
std::array<Real, 2> v2{3, 7};
auto [mu_u2, mu_v2, cov2] = means_and_covariance(u2, v2);
BOOST_TEST(abs(cov2+4) < tol);
BOOST_TEST(abs(mu_u2 - 6) < tol);
BOOST_TEST(abs(mu_v2 - 5) < tol);
std::vector<Real> u3{1,2,3};
std::vector<Real> v3{1,1,1};
auto [mu_u3, mu_v3, cov3] = means_and_covariance(u3, v3);
// Since v is constant, covariance(u,v) = 0 against everything any u:
BOOST_TEST(abs(cov3) < tol);
BOOST_TEST(abs(mu_u3 - 2) < tol);
BOOST_TEST(abs(mu_v3 - 1) < tol);
// Make sure we pull the correct symbol out of means_and_covariance:
cov3 = covariance(u3, v3);
BOOST_TEST(abs(cov3) < tol);
cov3 = covariance(v3, u3);
// Covariance is symmetric: cov(u,v) = cov(v,u)
BOOST_TEST(abs(cov3) < tol);
// cov(u,u) = sigma(u)^2:
cov3 = covariance(u3, u3);
Real expected = Real(2)/Real(3);
BOOST_TEST(abs(cov3 - expected) < tol);
std::mt19937 gen(15);
// Can't template standard library on multiprecision, so use double and cast back:
std::uniform_real_distribution<double> dis(-1.0, 1.0);
std::vector<Real> u(500);
std::vector<Real> v(500);
for(size_t i = 0; i < u.size(); ++i)
{
u[i] = (Real) dis(gen);
v[i] = (Real) dis(gen);
}
Real mu_u = boost::math::statistics::mean(u);
Real mu_v = boost::math::statistics::mean(v);
Real sigma_u_sq = boost::math::statistics::variance(u);
Real sigma_v_sq = boost::math::statistics::variance(v);
auto [mu_u_, mu_v_, cov_uv] = means_and_covariance(u, v);
BOOST_TEST(abs(mu_u - mu_u_) < tol);
BOOST_TEST(abs(mu_v - mu_v_) < tol);
// Cauchy-Schwartz inequality:
BOOST_TEST(cov_uv*cov_uv <= sigma_u_sq*sigma_v_sq);
// cov(X, X) = sigma(X)^2:
Real cov_uu = covariance(u, u);
BOOST_TEST(abs(cov_uu - sigma_u_sq) < tol);
Real cov_vv = covariance(v, v);
BOOST_TEST(abs(cov_vv - sigma_v_sq) < tol);
}
template<class Real>
void test_correlation_coefficient()
{
using boost::math::statistics::correlation_coefficient;
Real tol = std::numeric_limits<Real>::epsilon();
std::vector<Real> u{1};
std::vector<Real> v{1};
Real rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1,1};
v = {1,1};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {1, 2, 3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {-1, -2, -3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv + 1) < tol);
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv + 1) < tol);
u = {1, 2, 3};
v = {0, 0, 0};
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv) < tol);
u = {1, 2, 3};
v = {0, 0, 3};
rho_uv = correlation_coefficient(v, u);
// mu_u = 2, sigma_u^2 = 2/3, mu_v = 1, sigma_v^2 = 2, cov(u,v) = 1.
BOOST_TEST(abs(rho_uv - sqrt(Real(3))/Real(2)) < tol);
}
int main()
{
test_covariance<float>();
test_covariance<double>();
test_covariance<long double>();
test_covariance<cpp_bin_float_50>();
test_correlation_coefficient<float>();
test_correlation_coefficient<double>();
test_correlation_coefficient<long double>();
test_correlation_coefficient<cpp_bin_float_50>();
return boost::report_errors();
}
|