1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <random>
#include <cmath>
#include <boost/core/demangle.hpp>
#include <boost/math/special_functions/gegenbauer.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using std::abs;
using boost::math::gegenbauer;
using boost::math::gegenbauer_derivative;
template<class Real>
void test_parity()
{
std::mt19937 gen(323723);
std::uniform_real_distribution<Real> xdis(-1, +1);
std::uniform_real_distribution<Real> lambdadis(-0.5, 1);
for(unsigned n = 0; n < 50; ++n) {
unsigned calls = 50;
unsigned i = 0;
while(i++ < calls) {
Real x = xdis(gen);
Real lambda = lambdadis(gen);
if (n & 1) {
CHECK_ULP_CLOSE(gegenbauer(n, lambda, -x), -gegenbauer(n, lambda, x), 0);
}
else {
CHECK_ULP_CLOSE(gegenbauer(n, lambda, -x), gegenbauer(n, lambda, x), 0);
}
}
}
}
template<class Real>
void test_quadratic()
{
Real lambda = 1/Real(4);
auto c2 = [&](Real x) { return -lambda + 2*lambda*(1+lambda)*x*x; };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c2(x);
Real computed = gegenbauer(2, lambda, x);
CHECK_ULP_CLOSE(expected, computed, 0);
x += h;
}
}
template<class Real>
void test_cubic()
{
Real lambda = 1/Real(4);
auto c3 = [&](Real x) { return lambda*(1+lambda)*x*(-2 + 4*(2+lambda)*x*x/3); };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c3(x);
Real computed = gegenbauer(3, lambda, x);
CHECK_ULP_CLOSE(expected, computed, 4);
x += h;
}
}
template<class Real>
void test_derivative()
{
Real lambda = 0.5;
auto c3_prime = [&](Real x) { return 2*lambda*(lambda+1)*(-1 + 2*(lambda+2)*x*x); };
auto c3_double_prime = [&](Real x) { return 8*lambda*(lambda+1)*(lambda+2)*x; };
Real x = -1;
Real h = 1/Real(256);
while (x < 1) {
Real expected = c3_prime(x);
Real computed = gegenbauer_derivative(3, lambda, x, 1);
CHECK_ULP_CLOSE(expected, computed, 1);
expected = c3_double_prime(x);
computed = gegenbauer_derivative(3, lambda, x, 2);
CHECK_ULP_CLOSE(expected, computed, 1);
x += h;
}
}
int main()
{
test_parity<float>();
test_parity<double>();
test_parity<long double>();
test_quadratic<float>();
test_quadratic<double>();
test_quadratic<long double>();
test_cubic<double>();
test_cubic<long double>();
test_derivative<float>();
test_derivative<double>();
test_derivative<long double>();
#ifdef BOOST_HAS_FLOAT128
test_quadratic<boost::multiprecision::float128>();
test_cubic<boost::multiprecision::float128>();
#endif
return boost::math::test::report_errors();
}
|