File: linear_regression_test.cpp

package info (click to toggle)
boost1.74 1.74.0%2Bds1-21
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 463,588 kB
  • sloc: cpp: 3,338,117; xml: 131,293; python: 33,088; ansic: 14,292; asm: 4,038; sh: 3,353; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (176 lines) | stat: -rw-r--r-- 5,016 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
 * Copyright Nick Thompson, 2019
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include "math_unit_test.hpp"
#include <vector>
#include <random>
#include <boost/math/statistics/linear_regression.hpp>

using boost::math::statistics::simple_ordinary_least_squares;
using boost::math::statistics::simple_ordinary_least_squares_with_R_squared;

template<typename Real>
void test_line()
{
    std::vector<Real> x(128);
    std::vector<Real> y(128);
    Real expected_c0 = 7;
    Real expected_c1 = 12;
    for (size_t i = 0; i < x.size(); ++i) {
        x[i] = i;
        y[i] = expected_c0 + expected_c1*x[i];
    }

    auto [computed_c0, computed_c1] = simple_ordinary_least_squares(x, y);

    CHECK_ULP_CLOSE(expected_c0, computed_c0, 0);
    CHECK_ULP_CLOSE(expected_c1, computed_c1, 0);

    auto [computed_c0_R, computed_c1_R, Rsquared] = simple_ordinary_least_squares_with_R_squared(x, y);

    Real expected_Rsquared = 1;
    CHECK_ULP_CLOSE(expected_c0, computed_c0, 0);
    CHECK_ULP_CLOSE(expected_c1, computed_c1, 0);
    CHECK_ULP_CLOSE(expected_Rsquared, Rsquared, 0);

}

template<typename Real>
void test_constant()
{
    std::vector<Real> x(128);
    std::vector<Real> y(128);
    Real expected_c0 = 7;
    Real expected_c1 = 0;
    for (size_t i = 0; i < x.size(); ++i) {
        x[i] = i;
        y[i] = expected_c0 + expected_c1*x[i];
    }

    auto [computed_c0, computed_c1] = simple_ordinary_least_squares(x, y);

    CHECK_ULP_CLOSE(expected_c0, computed_c0, 0);
    CHECK_ULP_CLOSE(expected_c1, computed_c1, 0);

    auto [computed_c0_R, computed_c1_R, Rsquared] = simple_ordinary_least_squares_with_R_squared(x, y);

    Real expected_Rsquared = 1;
    CHECK_ULP_CLOSE(expected_c0, computed_c0, 0);
    CHECK_ULP_CLOSE(expected_c1, computed_c1, 0);
    CHECK_ULP_CLOSE(expected_Rsquared, Rsquared, 0);

}

template<typename Real>
void test_permutation_invariance()
{
    std::vector<Real> x(256);
    std::vector<Real> y(256);
    std::mt19937_64 gen{123456};
    std::normal_distribution<Real> dis(0, 0.1);

    Real expected_c0 = -7.2;
    Real expected_c1 = -13.5;

    x[0] = 0;
    y[0] = expected_c0 + dis(gen);
    for(size_t i = 1; i < x.size(); ++i) {
        Real t = dis(gen);
        x[i] = x[i-1] + t*t;
        y[i] = expected_c0 + expected_c1*x[i] + dis(gen);
    }

    auto [c0, c1, Rsquared] = simple_ordinary_least_squares_with_R_squared(x, y);
    CHECK_MOLLIFIED_CLOSE(expected_c0, c0, 0.002);
    CHECK_MOLLIFIED_CLOSE(expected_c1, c1, 0.002);

    int j = 0;
    std::mt19937_64 gen1{12345};
    std::mt19937_64 gen2{12345};
    while(j++ < 10) {
        std::shuffle(x.begin(), x.end(), gen1);
        std::shuffle(y.begin(), y.end(), gen2);
        auto [c0_, c1_, Rsquared_] = simple_ordinary_least_squares_with_R_squared(x, y);

        CHECK_ULP_CLOSE(c0, c0_, 100);
        CHECK_ULP_CLOSE(c1, c1_, 100);
        CHECK_ULP_CLOSE(Rsquared, Rsquared_, 65);
    }
}

template<typename Real>
void test_scaling_relations()
{
    std::vector<Real> x(256);
    std::vector<Real> y(256);
    std::mt19937_64 gen{123456};
    std::normal_distribution<Real> dis(0, 0.1);

    Real expected_c0 = 3.2;
    Real expected_c1 = -13.5;

    x[0] = 0;
    y[0] = expected_c0 + dis(gen);
    for(size_t i = 1; i < x.size(); ++i) {
        Real t = dis(gen);
        x[i] = x[i-1] + t*t;
        y[i] = expected_c0 + expected_c1*x[i] + dis(gen);
    }

    auto [c0, c1, Rsquared] = simple_ordinary_least_squares_with_R_squared(x, y);
    CHECK_MOLLIFIED_CLOSE(expected_c0, c0, 0.005);
    CHECK_MOLLIFIED_CLOSE(expected_c1, c1, 0.005);

    // If y -> lambda y, then c0 -> lambda c0 and c1 -> lambda c1.
    Real lambda = 6;

    for (auto& s : y) {
        s *= lambda;
    }

    auto [c0_lambda, c1_lambda, Rsquared_lambda] = simple_ordinary_least_squares_with_R_squared(x, y);

    CHECK_ULP_CLOSE(lambda*c0, c0_lambda, 30);
    CHECK_ULP_CLOSE(lambda*c1, c1_lambda, 30);
    CHECK_ULP_CLOSE(Rsquared, Rsquared_lambda, 3);

    // If x -> lambda x, then c0 -> c0 and c1 -> c1/lambda
    for (auto& s : x) {
        s *= lambda;
    }
    // Put y back into it's original state:
    for (auto& s : y) {
        s /= lambda;
    }
    auto [c0_, c1_, Rsquared_] = simple_ordinary_least_squares_with_R_squared(x, y);

    CHECK_ULP_CLOSE(c0, c0_, 50);
    CHECK_ULP_CLOSE(c1, c1_*lambda, 50);
    CHECK_ULP_CLOSE(Rsquared, Rsquared_, 50);

}


int main()
{
    test_line<float>();
    test_line<double>();
    test_line<long double>();

    test_constant<float>();
    test_constant<double>();
    test_constant<long double>();

    test_permutation_invariance<float>();
    test_permutation_invariance<double>();
    test_permutation_invariance<long double>();

    test_scaling_relations<float>();
    test_scaling_relations<double>();
    test_scaling_relations<long double>();
    return boost::math::test::report_errors();
}