File: step_size_limitation.cpp

package info (click to toggle)
boost1.74 1.74.0%2Bds1-21
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 463,588 kB
  • sloc: cpp: 3,338,117; xml: 131,293; python: 33,088; ansic: 14,292; asm: 4,038; sh: 3,353; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (268 lines) | stat: -rw-r--r-- 8,400 bytes parent folder | download | duplicates (18)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 [auto_generated]
 libs/numeric/odeint/test/step_size_limitation.cpp

 [begin_description]
 Tests the step size limitation functionality
 [end_description]

 Copyright 2015 Mario Mulansky

 Distributed under the Boost Software License, Version 1.0.
 (See accompanying file LICENSE_1_0.txt or
 copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#define BOOST_TEST_MODULE odeint_integrate_times

#include <boost/test/unit_test.hpp>

#include <utility>
#include <iostream>
#include <vector>

#include <boost/numeric/odeint.hpp>

using namespace boost::unit_test;
using namespace boost::numeric::odeint;

typedef double value_type;
typedef std::vector< value_type > state_type;

/***********************************************
 * first part of the tests: explicit methods
 ***********************************************
 */

void damped_osc( const state_type &x , state_type &dxdt , const value_type t )
{
    const value_type gam( 0.1);

    dxdt[0] = x[1];
    dxdt[1] = -x[0] - gam*x[1];
}


struct push_back_time
{
    std::vector< double >& m_times;

    push_back_time( std::vector< double > &times )
    :  m_times( times ) { }

    template<typename State>
    void operator()( const State &x , double t )
    {
        m_times.push_back( t );
    }
};

BOOST_AUTO_TEST_SUITE( step_size_limitation_test )

BOOST_AUTO_TEST_CASE( test_step_adjuster )
{
    // first use adjuster without step size limitation
    default_step_adjuster<double, double> step_adjuster;
    const double dt = 0.1;
    double dt_new = step_adjuster.decrease_step(dt, 1.5, 2);
    BOOST_CHECK(dt_new < dt*2.0/3.0);

    dt_new = step_adjuster.increase_step(dt, 0.8, 1);
    // for errors > 0.5 no increase is performed
    BOOST_CHECK(dt_new == dt);

    dt_new = step_adjuster.increase_step(dt, 0.4, 1);
    // smaller errors should lead to step size increase
    std::cout << dt_new << std::endl;
    BOOST_CHECK(dt_new > dt);


    // now test with step size limitation max_dt = 0.1
    default_step_adjuster<double, double>
        limited_adjuster(dt);

    dt_new = limited_adjuster.decrease_step(dt, 1.5, 2);
    // decreasing works as before
    BOOST_CHECK(dt_new < dt*2.0/3.0);

    dt_new = limited_adjuster.decrease_step(2*dt, 1.1, 2);
    // decreasing a large step size should give max_dt
    BOOST_CHECK(dt_new == dt);

    dt_new = limited_adjuster.increase_step(dt, 0.8, 1);
    // for errors > 0.5 no increase is performed, still valid
    BOOST_CHECK(dt_new == dt);

    dt_new = limited_adjuster.increase_step(dt, 0.4, 1);
    // but even for smaller errors, we should at most get 0.1
    BOOST_CHECK_EQUAL(dt_new, dt);

    dt_new = limited_adjuster.increase_step(0.9*dt, 0.1, 1);
    std::cout << dt_new << std::endl;
    // check that we don't increase beyond max_dt
    BOOST_CHECK(dt_new == dt);
}


template<class Stepper>
void test_explicit_stepper(Stepper stepper, const double max_dt)
{
    state_type x( 2 );
    x[0] = x[1] = 10.0;
    const size_t steps = 100;

    std::vector<double> times;

    integrate_adaptive(stepper, damped_osc, x, 0.0, steps*max_dt, max_dt, push_back_time(times));

    BOOST_CHECK_EQUAL(times.size(), steps+1);
    // check that dt remains at exactly max_dt
    for( size_t i=0 ; i<times.size() ; ++i )
        // check if observer was called at times 0,1,2,...
        BOOST_CHECK_SMALL( times[i] - static_cast<double>(i)*max_dt , 1E-15);
    times.clear();

    // this should also work when we provide some bigger initial dt
    integrate_adaptive(stepper, damped_osc, x, 0.0, steps*max_dt, 10*max_dt, push_back_time(times));

    BOOST_CHECK_EQUAL(times.size(), steps+1);
    // check that dt remains at exactly max_dt
    for( size_t i=0 ; i<times.size() ; ++i )
        // check if observer was called at times 0,1,2,...
        BOOST_CHECK_SMALL( times[i] - static_cast<double>(i)*max_dt , 1E-15);
    times.clear();
}


BOOST_AUTO_TEST_CASE( test_controlled )
{
    const double max_dt = 0.01;

    test_explicit_stepper(make_controlled(1E-2, 1E-2, max_dt,
                                            runge_kutta_dopri5<state_type>()),
                            max_dt);
    test_explicit_stepper(make_controlled(1E-2, 1E-2, -max_dt,
                                            runge_kutta_dopri5<state_type>()),
                            -max_dt);

    test_explicit_stepper(make_controlled(1E-2, 1E-2, max_dt,
                                            runge_kutta_cash_karp54<state_type>()),
                            max_dt);
    test_explicit_stepper(make_controlled(1E-2, 1E-2, -max_dt,
                                            runge_kutta_cash_karp54<state_type>()),
                            -max_dt);

    test_explicit_stepper(bulirsch_stoer<state_type>(1E-2, 1E-2, 1.0, 1.0, max_dt),
                            max_dt);
    test_explicit_stepper(bulirsch_stoer<state_type>(1E-2, 1E-2, 1.0, 1.0, -max_dt),
                            -max_dt);
}


BOOST_AUTO_TEST_CASE( test_dense_out )
{
    const double max_dt = 0.01;
    test_explicit_stepper(make_dense_output(1E-2, 1E-2, max_dt,
                                             runge_kutta_dopri5<state_type>()),
                          max_dt);
    test_explicit_stepper(make_dense_output(1E-2, 1E-2, -max_dt,
                                            runge_kutta_dopri5<state_type>()),
                          -max_dt);

    test_explicit_stepper(bulirsch_stoer_dense_out<state_type>(1E-2, 1E-2, 1, 1, max_dt),
                          max_dt);

    test_explicit_stepper(bulirsch_stoer_dense_out<state_type>(1E-2, 1E-2, 1, 1, -max_dt),
                          -max_dt);
}


/***********************************************
 * second part of the tests: implicit Rosenbrock
 ***********************************************
 */

typedef boost::numeric::ublas::vector< value_type > vector_type;
typedef boost::numeric::ublas::matrix< value_type > matrix_type;


// harmonic oscillator, analytic solution x[0] = sin( t )
struct osc_rhs
{
    void operator()( const vector_type &x , vector_type &dxdt , const value_type &t ) const
    {
        dxdt( 0 ) = x( 1 );
        dxdt( 1 ) = -x( 0 );
    }
};

struct osc_jacobi
{
    void operator()( const vector_type &x , matrix_type &jacobi , const value_type &t , vector_type &dfdt ) const
    {
        jacobi( 0 , 0 ) = 0;
        jacobi( 0 , 1 ) = 1;
        jacobi( 1 , 0 ) = -1;
        jacobi( 1 , 1 ) = 0;
        dfdt( 0 ) = 0.0;
        dfdt( 1 ) = 0.0;
    }
};


template<class Stepper>
void test_rosenbrock_stepper(Stepper stepper, const double max_dt)
{
    vector_type x( 2 );
    x(0) = x(1) = 10.0;
    const size_t steps = 100;

    std::vector<double> times;

    integrate_adaptive(stepper,
                       std::make_pair(osc_rhs(), osc_jacobi()),
                       x, 0.0, steps*max_dt, max_dt, push_back_time(times));

    BOOST_CHECK_EQUAL(times.size(), steps+1);
    // check that dt remains at exactly max_dt
    for( size_t i=0 ; i<times.size() ; ++i )
        // check if observer was called at times 0,1,2,...
        BOOST_CHECK_SMALL( times[i] - static_cast<double>(i)*max_dt , 1E-15);
    times.clear();

    // this should also work when we provide some bigger initial dt
    integrate_adaptive(stepper,
                       std::make_pair(osc_rhs(), osc_jacobi()),
                       x, 0.0, steps*max_dt, 10*max_dt, push_back_time(times));

    BOOST_CHECK_EQUAL(times.size(), steps+1);
    // check that dt remains at exactly max_dt
    for( size_t i=0 ; i<times.size() ; ++i )
        // check if observer was called at times 0,1,2,...
        BOOST_CHECK_SMALL( times[i] - static_cast<double>(i)*max_dt , 1E-15);
    times.clear();
}


BOOST_AUTO_TEST_CASE( test_controlled_rosenbrock )
{
    const double max_dt = 0.01;

    test_rosenbrock_stepper(make_controlled(1E-2, 1E-2, max_dt, rosenbrock4<value_type>()),
                            max_dt);
    test_rosenbrock_stepper(make_controlled(1E-2, 1E-2, -max_dt, rosenbrock4<value_type>()),
                            -max_dt);
}


BOOST_AUTO_TEST_CASE( test_dense_out_rosenbrock )
{
    const double max_dt = 0.01;

    test_rosenbrock_stepper(make_dense_output(1E-2, 1E-2, max_dt, rosenbrock4<value_type>()),
                            max_dt);
    test_rosenbrock_stepper(make_dense_output(1E-2, 1E-2, -max_dt, rosenbrock4<value_type>()),
                            -max_dt);
}

BOOST_AUTO_TEST_SUITE_END()