1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/* test_piecewise_linear.cpp
*
* Copyright Steven Watanabe 2011
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id$
*
*/
#include <boost/random/piecewise_linear_distribution.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/exception/diagnostic_information.hpp>
#include <boost/range/algorithm/lower_bound.hpp>
#include <boost/range/numeric.hpp>
#include <vector>
#include <iostream>
#include <iomanip>
#include "statistic_tests.hpp"
class piecewise_linear
{
public:
piecewise_linear(const std::vector<double>& intervals, const std::vector<double>& weights)
: intervals(intervals),
weights(weights),
cumulative(1, 0.0)
{
for(std::size_t i = 0; i < weights.size() - 1; ++i) {
cumulative.push_back((weights[i] + weights[i + 1]) / 2);
}
boost::partial_sum(cumulative, cumulative.begin());
double sum = cumulative.back();
for(std::vector<double>::iterator iter = cumulative.begin(), end = cumulative.end();
iter != end; ++iter)
{
*iter /= sum;
}
for(std::vector<double>::iterator iter = this->weights.begin(), end = this->weights.end();
iter != end; ++iter)
{
*iter /= sum;
}
assert(this->weights.size() == this->intervals.size());
assert(this->weights.size() == this->cumulative.size());
}
double cdf(double x) const
{
std::size_t index = boost::lower_bound(intervals, x) - intervals.begin();
if(index == 0) return 0;
else if(index == intervals.size()) return 1;
else {
double start = cumulative[index - 1];
double lower_weight = weights[index - 1];
double upper_weight = weights[index];
double lower = intervals[index - 1];
double upper = intervals[index];
double mid_weight = (lower_weight * (upper - x) + upper_weight * (x - lower)) / (upper - lower);
double segment_area = (x - lower) * (mid_weight + lower_weight) / 2;
return start + segment_area;
}
}
private:
std::vector<double> intervals;
std::vector<double> weights;
std::vector<double> cumulative;
};
double cdf(const piecewise_linear& dist, double x)
{
return dist.cdf(x);
}
bool do_test(int n, int max) {
std::cout << "running piecewise_linear(p0, p1, ..., p" << n-1 << ")" << " " << max << " times: " << std::flush;
std::vector<double> weights;
{
boost::mt19937 egen;
for(int i = 0; i < n; ++i) {
weights.push_back(egen());
}
}
std::vector<double> intervals;
for(int i = 0; i < n; ++i) {
intervals.push_back(i);
}
piecewise_linear expected(intervals, weights);
boost::random::piecewise_linear_distribution<> dist(intervals, weights);
boost::mt19937 gen;
kolmogorov_experiment test(max);
boost::variate_generator<boost::mt19937&, boost::random::piecewise_linear_distribution<> > vgen(gen, dist);
double prob = test.probability(test.run(vgen, expected));
bool result = prob < 0.99;
const char* err = result? "" : "*";
std::cout << std::setprecision(17) << prob << err << std::endl;
std::cout << std::setprecision(6);
return result;
}
bool do_tests(int repeat, int max_n, int trials) {
boost::mt19937 gen;
boost::uniform_int<> idist(2, max_n);
int errors = 0;
for(int i = 0; i < repeat; ++i) {
if(!do_test(idist(gen), trials)) {
++errors;
}
}
if(errors != 0) {
std::cout << "*** " << errors << " errors detected ***" << std::endl;
}
return errors == 0;
}
int usage() {
std::cerr << "Usage: test_piecewise_linear -r <repeat> -n <max n> -t <trials>" << std::endl;
return 2;
}
template<class T>
bool handle_option(int& argc, char**& argv, char opt, T& value) {
if(argv[0][1] == opt && argc > 1) {
--argc;
++argv;
value = boost::lexical_cast<T>(argv[0]);
return true;
} else {
return false;
}
}
int main(int argc, char** argv) {
int repeat = 10;
int max_n = 10;
int trials = 1000000;
if(argc > 0) {
--argc;
++argv;
}
while(argc > 0) {
if(argv[0][0] != '-') return usage();
else if(!handle_option(argc, argv, 'r', repeat)
&& !handle_option(argc, argv, 'n', max_n)
&& !handle_option(argc, argv, 't', trials)) {
return usage();
}
--argc;
++argv;
}
try {
if(do_tests(repeat, max_n, trials)) {
return 0;
} else {
return EXIT_FAILURE;
}
} catch(...) {
std::cerr << boost::current_exception_diagnostic_information() << std::endl;
return EXIT_FAILURE;
}
}
|