File: p_square_cumul_dist.cpp

package info (click to toggle)
boost1.74 1.74.0-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 464,084 kB
  • sloc: cpp: 3,338,324; xml: 131,293; python: 33,088; ansic: 14,336; asm: 4,034; sh: 3,351; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (124 lines) | stat: -rw-r--r-- 4,668 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
//  (C) Copyright Eric Niebler, Olivier Gygi 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

// Test case for p_square_cumul_dist.hpp

#include <cmath>
#include <boost/random.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/accumulators/numeric/functional/vector.hpp>
#include <boost/accumulators/numeric/functional/complex.hpp>
#include <boost/accumulators/numeric/functional/valarray.hpp>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/p_square_cumul_dist.hpp>
#include <sstream>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>

using namespace boost;
using namespace unit_test;
using namespace boost::accumulators;

///////////////////////////////////////////////////////////////////////////////
// erf() not known by VC++ compiler!
// my_erf() computes error function by numerically integrating with trapezoidal rule
//
double my_erf(double const& x, int const& n = 1000)
{
    double sum = 0.;
    double delta = x/n;
    for (int i = 1; i < n; ++i)
        sum += std::exp(-i*i*delta*delta) * delta;
    sum += 0.5 * delta * (1. + std::exp(-x*x));
    return sum * 2. / std::sqrt(3.141592653);
}

typedef accumulator_set<double, stats<tag::p_square_cumulative_distribution> > accumulator_t;
typedef iterator_range<std::vector<std::pair<double, double> >::iterator > histogram_type;

///////////////////////////////////////////////////////////////////////////////
// test_stat
//
void test_stat()
{
    // tolerance in %
    double epsilon = 3;

    accumulator_t acc(p_square_cumulative_distribution_num_cells = 100);

    // two random number generators
    boost::lagged_fibonacci607 rng;
    boost::normal_distribution<> mean_sigma(0,1);
    boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma);

    for (std::size_t i=0; i<1000000; ++i)
    {
        acc(normal());
    }

    histogram_type histogram = p_square_cumulative_distribution(acc);

    for (std::size_t i = 0; i < histogram.size(); ++i)
    {
        // problem with small results: epsilon is relative (in percent), not absolute!
        if ( histogram[i].second > 0.001 )
            BOOST_CHECK_CLOSE( 0.5 * (1.0 + my_erf( histogram[i].first / std::sqrt(2.0) )), histogram[i].second, epsilon );
    }
}

///////////////////////////////////////////////////////////////////////////////
// test_persistency
//
void test_persistency()
{
    // "persistent" storage
    std::stringstream ss;
    // tolerance in %
    double epsilon = 3;
    {
        accumulator_t acc(p_square_cumulative_distribution_num_cells = 100);

        // two random number generators
        boost::lagged_fibonacci607 rng;
        boost::normal_distribution<> mean_sigma(0,1);
        boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma);

        for (std::size_t i=0; i<1000000; ++i)
        {
            acc(normal());
        }

        histogram_type histogram = p_square_cumulative_distribution(acc);

        BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[25].first / std::sqrt(2.0))), histogram[25].second, epsilon);
        BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[50].first / std::sqrt(2.0))), histogram[50].second, epsilon);
        BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[75].first / std::sqrt(2.0))), histogram[75].second, epsilon);
        boost::archive::text_oarchive oa(ss);
        acc.serialize(oa, 0);
    }
    accumulator_t acc(p_square_cumulative_distribution_num_cells = 100);
    boost::archive::text_iarchive ia(ss);
    acc.serialize(ia, 0);
    histogram_type histogram = p_square_cumulative_distribution(acc);
    BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[25].first / std::sqrt(2.0))), histogram[25].second, epsilon);
    BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[50].first / std::sqrt(2.0))), histogram[50].second, epsilon);
    BOOST_CHECK_CLOSE(0.5 * (1.0 + my_erf(histogram[75].first / std::sqrt(2.0))), histogram[75].second, epsilon);
}

///////////////////////////////////////////////////////////////////////////////
// init_unit_test_suite
//
test_suite* init_unit_test_suite( int argc, char* argv[] )
{
    test_suite *test = BOOST_TEST_SUITE("p_square_cumulative_distribution test");

    test->add(BOOST_TEST_CASE(&test_stat));
    test->add(BOOST_TEST_CASE(&test_persistency));

    return test;
}