1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
//---------------------------------------------------------------------------//
// Copyright (c) 2014 Roshan <thisisroshansmail@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_UNIQUE_COPY_HPP
#define BOOST_COMPUTE_ALGORITHM_UNIQUE_COPY_HPP
#include <boost/static_assert.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/lambda.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy_if.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/algorithm/gather.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/functional/operator.hpp>
#include <boost/compute/type_traits/is_device_iterator.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class InputIterator, class OutputIterator, class BinaryPredicate>
inline OutputIterator serial_unique_copy(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryPredicate op,
command_queue &queue)
{
if(first == last){
return result;
}
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
const context &context = queue.get_context();
size_t count = detail::iterator_range_size(first, last);
detail::meta_kernel k("serial_unique_copy");
vector<uint_> unique_count_vector(1, context);
size_t size_arg = k.add_arg<const uint_>("size");
size_t unique_count_arg = k.add_arg<uint_ *>(memory_object::global_memory, "unique_count");
k << k.decl<uint_>("index") << " = 0;\n"
<< k.decl<value_type>("current") << " = " << first[k.var<uint_>("0")] << ";\n"
<< result[k.var<uint_>("0")] << " = current;\n"
<< "for(uint i = 1; i < size; i++){\n"
<< " " << k.decl<value_type>("next") << " = " << first[k.var<uint_>("i")] << ";\n"
<< " if(!" << op(k.var<value_type>("current"), k.var<value_type>("next")) << "){\n"
<< " " << result[k.var<uint_>("++index")] << " = next;\n"
<< " " << "current = next;\n"
<< " }\n"
<< "}\n"
<< "*unique_count = index + 1;\n";
k.set_arg<const uint_>(size_arg, count);
k.set_arg(unique_count_arg, unique_count_vector.get_buffer());
k.exec_1d(queue, 0, 1, 1);
uint_ unique_count;
copy_n(unique_count_vector.begin(), 1, &unique_count, queue);
return result + unique_count;
}
template<class InputIterator, class OutputIterator, class BinaryPredicate>
inline OutputIterator unique_copy(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryPredicate op,
command_queue &queue)
{
if(first == last){
return result;
}
const context &context = queue.get_context();
size_t count = detail::iterator_range_size(first, last);
// flags marking unique elements
vector<uint_> flags(count, context);
// find each unique element and mark it with a one
transform(
first, last - 1, first + 1, flags.begin() + 1, not2(op), queue
);
// first element is always unique
fill_n(flags.begin(), 1, 1, queue);
// storage for desination indices
vector<uint_> indices(count, context);
// copy indices for each unique element
vector<uint_>::iterator last_index = detail::copy_index_if(
flags.begin(), flags.end(), indices.begin(), lambda::_1 == 1, queue
);
// copy unique values from input to output using the computed indices
gather(indices.begin(), last_index, first, result, queue);
// return an iterator to the end of the unique output range
return result + std::distance(indices.begin(), last_index);
}
} // end detail namespace
/// Makes a copy of the range [first, last) and removes all consecutive
/// duplicate elements (determined by \p op) from the copy. If \p op is not
/// provided, the equality operator is used.
///
/// \param first first element in the input range
/// \param last last element in the input range
/// \param result first element in the result range
/// \param op binary operator used to check for uniqueness
/// \param queue command queue to perform the operation
///
/// \return \c OutputIterator to the end of the result range
///
/// Space complexity: \Omega(4n)
///
/// \see unique()
template<class InputIterator, class OutputIterator, class BinaryPredicate>
inline OutputIterator unique_copy(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryPredicate op,
command_queue &queue = system::default_queue())
{
BOOST_STATIC_ASSERT(is_device_iterator<InputIterator>::value);
BOOST_STATIC_ASSERT(is_device_iterator<OutputIterator>::value);
size_t count = detail::iterator_range_size(first, last);
if(count < 32){
return detail::serial_unique_copy(first, last, result, op, queue);
}
else {
return detail::unique_copy(first, last, result, op, queue);
}
}
/// \overload
template<class InputIterator, class OutputIterator>
inline OutputIterator unique_copy(InputIterator first,
InputIterator last,
OutputIterator result,
command_queue &queue = system::default_queue())
{
BOOST_STATIC_ASSERT(is_device_iterator<InputIterator>::value);
BOOST_STATIC_ASSERT(is_device_iterator<OutputIterator>::value);
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
return ::boost::compute::unique_copy(
first, last, result, ::boost::compute::equal_to<value_type>(), queue
);
}
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_UNIQUE_COPY_HPP
|