1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
//
// Copyright 2005-2007 Adobe Systems Incorporated
// Copyright 2018-2020 Mateusz Loskot <mateusz at loskot dot net>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/gil/channel.hpp>
#include <boost/gil/channel_algorithm.hpp>
#include <boost/gil/typedefs.hpp>
#include <boost/core/lightweight_test.hpp>
#include <cmath>
#include <cstdint>
#include <limits>
namespace gil = boost::gil;
// FIXME: Remove when https://github.com/boostorg/core/issues/38 happens
#define BOOST_GIL_TEST_IS_CLOSE(a, b, epsilon) BOOST_TEST_LT(std::fabs((a) - (b)), (epsilon))
struct int_minus_value { static std::int8_t apply() { return -64; } };
struct int_plus_value { static std::int8_t apply() { return 64; } };
using fixture = gil::scoped_channel_value
<
std::uint8_t, int_minus_value, int_plus_value
>;
void test_scoped_channel_value_default_constructor()
{
fixture f;
std::uint8_t v = f;
BOOST_TEST_EQ(v, std::uint8_t{0});
}
void test_scoped_channel_value_user_defined_constructors()
{
fixture f{1};
std::uint8_t v = f;
BOOST_TEST_EQ(v, std::uint8_t{1});
}
void test_scoped_channel_value_copy_constructors()
{
fixture f1{128};
fixture f2{f1};
BOOST_TEST_EQ(std::uint8_t{f1}, std::uint8_t{128});
BOOST_TEST_EQ(std::uint8_t{f1}, std::uint8_t{f2});
}
void test_scoped_channel_value_assignment()
{
fixture f;
f = 64;
std::uint8_t v = f;
BOOST_TEST_EQ(v, std::uint8_t{64});
}
void test_scoped_channel_value_float32_t()
{
auto const epsilon = std::numeric_limits<float>::epsilon();
// min
BOOST_GIL_TEST_IS_CLOSE(gil::float_point_zero<float>::apply(), 0.0, epsilon);
BOOST_TEST_EQ(gil::channel_traits<gil::float32_t>::min_value(), 0.0);
// max
BOOST_GIL_TEST_IS_CLOSE(gil::float_point_one<float>::apply(), 1.0, epsilon);
BOOST_TEST_EQ(gil::channel_traits<gil::float32_t>::max_value(), 1.0);
}
void test_scoped_channel_value_float64_t()
{
auto const epsilon = std::numeric_limits<double>::epsilon();
// min
BOOST_GIL_TEST_IS_CLOSE(gil::float_point_zero<double>::apply(), 0.0, epsilon);
BOOST_GIL_TEST_IS_CLOSE(gil::channel_traits<gil::float64_t>::min_value(), 0.0, epsilon);
// max
BOOST_GIL_TEST_IS_CLOSE(gil::float_point_one<double>::apply(), 1.0, epsilon);
BOOST_GIL_TEST_IS_CLOSE(gil::channel_traits<gil::float64_t>::max_value(), 1.0, epsilon);
}
void test_scoped_channel_value_halfs()
{
// Create a double channel with range [-0.5 .. 0.5]
struct minus_half { static double apply() { return -0.5; } };
struct plus_half { static double apply() { return 0.5; } };
using halfs = gil::scoped_channel_value<double, minus_half, plus_half>;
auto const epsilon = std::numeric_limits<double>::epsilon();
BOOST_GIL_TEST_IS_CLOSE(gil::channel_traits<halfs>::min_value(), minus_half::apply(), epsilon);
BOOST_GIL_TEST_IS_CLOSE(gil::channel_traits<halfs>::max_value(), plus_half::apply(), epsilon);
// scoped channel maximum should map to the maximum
BOOST_GIL_TEST_IS_CLOSE(gil::channel_convert<std::uint16_t>(
gil::channel_traits<halfs>::max_value()), 65535, epsilon);
}
int main()
{
test_scoped_channel_value_default_constructor();
test_scoped_channel_value_user_defined_constructors();
test_scoped_channel_value_copy_constructors();
test_scoped_channel_value_assignment();
test_scoped_channel_value_float32_t();
test_scoped_channel_value_float64_t();
test_scoped_channel_value_halfs();
return ::boost::report_errors();
}
|