1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
//
//=======================================================================
// Copyright 2002 Marc Wintermantel (wintermantel@even-ag.ch)
// ETH Zurich, Center of Structure Technologies
// (https://web.archive.org/web/20050307090307/http://www.structures.ethz.ch/)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_GRAPH_SLOAN_HPP
#define BOOST_GRAPH_SLOAN_HPP
#define WEIGHT1 1 // default weight for the distance in the Sloan algorithm
#define WEIGHT2 2 // default weight for the degree in the Sloan algorithm
#include <boost/config.hpp>
#include <vector>
#include <queue>
#include <algorithm>
#include <limits>
#include <boost/pending/queue.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/properties.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/cuthill_mckee_ordering.hpp>
////////////////////////////////////////////////////////////
//
// Sloan-Algorithm for graph reordering
//(optimzes profile and wavefront, not primiraly bandwidth
//
////////////////////////////////////////////////////////////
namespace boost
{
/////////////////////////////////////////////////////////////////////////
// Function that returns the maximum depth of
// a rooted level strucutre (RLS)
//
/////////////////////////////////////////////////////////////////////////
template < class Distance > typename Distance::value_type RLS_depth(Distance& d)
{
typename Distance::value_type h_s = 0;
typename Distance::iterator iter;
for (iter = d.begin(); iter != d.end(); ++iter)
{
if (*iter > h_s)
{
h_s = *iter;
}
}
return h_s;
}
/////////////////////////////////////////////////////////////////////////
// Function that returns the width of the largest level of
// a rooted level strucutre (RLS)
//
/////////////////////////////////////////////////////////////////////////
template < class Distance, class my_int >
typename Distance::value_type RLS_max_width(Distance& d, my_int depth)
{
typedef typename Distance::value_type Degree;
// Searching for the maximum width of a level
std::vector< Degree > dummy_width(depth + 1, 0);
typename std::vector< Degree >::iterator my_it;
typename Distance::iterator iter;
Degree w_max = 0;
for (iter = d.begin(); iter != d.end(); ++iter)
{
dummy_width[*iter]++;
}
for (my_it = dummy_width.begin(); my_it != dummy_width.end(); ++my_it)
{
if (*my_it > w_max)
w_max = *my_it;
}
return w_max;
}
/////////////////////////////////////////////////////////////////////////
// Function for finding a good starting node for Sloan algorithm
//
// This is to find a good starting node. "good" is in the sense
// of the ordering generated.
/////////////////////////////////////////////////////////////////////////
template < class Graph, class ColorMap, class DegreeMap >
typename graph_traits< Graph >::vertex_descriptor sloan_start_end_vertices(
Graph& G, typename graph_traits< Graph >::vertex_descriptor& s,
ColorMap color, DegreeMap degree)
{
typedef typename property_traits< DegreeMap >::value_type Degree;
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef typename std::vector<
typename graph_traits< Graph >::vertices_size_type >::iterator vec_iter;
typedef typename graph_traits< Graph >::vertices_size_type size_type;
typedef typename property_map< Graph, vertex_index_t >::const_type VertexID;
s = *(vertices(G).first);
Vertex e = s;
Vertex i;
Degree my_degree = get(degree, s);
Degree dummy, h_i, h_s, w_i, w_e;
bool new_start = true;
Degree maximum_degree = 0;
// Creating a std-vector for storing the distance from the start vertex in
// dist
std::vector< typename graph_traits< Graph >::vertices_size_type > dist(
num_vertices(G), 0);
// Wrap a property_map_iterator around the std::iterator
boost::iterator_property_map< vec_iter, VertexID, size_type, size_type& >
dist_pmap(dist.begin(), get(vertex_index, G));
// Creating a property_map for the indices of a vertex
typename property_map< Graph, vertex_index_t >::type index_map
= get(vertex_index, G);
// Creating a priority queue
typedef indirect_cmp< DegreeMap, std::greater< Degree > > Compare;
Compare comp(degree);
std::priority_queue< Vertex, std::vector< Vertex >, Compare > degree_queue(
comp);
// step 1
// Scan for the vertex with the smallest degree and the maximum degree
typename graph_traits< Graph >::vertex_iterator ui, ui_end;
for (boost::tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui)
{
dummy = get(degree, *ui);
if (dummy < my_degree)
{
my_degree = dummy;
s = *ui;
}
if (dummy > maximum_degree)
{
maximum_degree = dummy;
}
}
// end 1
do
{
new_start = false; // Setting the loop repetition status to false
// step 2
// initialize the the disance std-vector with 0
for (typename std::vector< typename graph_traits<
Graph >::vertices_size_type >::iterator iter
= dist.begin();
iter != dist.end(); ++iter)
*iter = 0;
// generating the RLS (rooted level structure)
breadth_first_search(G, s,
visitor(
make_bfs_visitor(record_distances(dist_pmap, on_tree_edge()))));
// end 2
// step 3
// calculating the depth of the RLS
h_s = RLS_depth(dist);
// step 4
// pushing one node of each degree in an ascending manner into
// degree_queue
std::vector< bool > shrink_trace(maximum_degree, false);
for (boost::tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui)
{
dummy = get(degree, *ui);
if ((dist[index_map[*ui]] == h_s) && (!shrink_trace[dummy]))
{
degree_queue.push(*ui);
shrink_trace[dummy] = true;
}
}
// end 3 & 4
// step 5
// Initializing w
w_e = (std::numeric_limits< Degree >::max)();
// end 5
// step 6
// Testing for termination
while (!degree_queue.empty())
{
i = degree_queue.top(); // getting the node with the lowest degree
// from the degree queue
degree_queue.pop(); // ereasing the node with the lowest degree from
// the degree queue
// generating a RLS
for (typename std::vector< typename graph_traits<
Graph >::vertices_size_type >::iterator iter
= dist.begin();
iter != dist.end(); ++iter)
*iter = 0;
breadth_first_search(G, i,
boost::visitor(make_bfs_visitor(
record_distances(dist_pmap, on_tree_edge()))));
// Calculating depth and width of the rooted level
h_i = RLS_depth(dist);
w_i = RLS_max_width(dist, h_i);
// Testing for termination
if ((h_i > h_s) && (w_i < w_e))
{
h_s = h_i;
s = i;
while (!degree_queue.empty())
degree_queue.pop();
new_start = true;
}
else if (w_i < w_e)
{
w_e = w_i;
e = i;
}
}
// end 6
} while (new_start);
return e;
}
//////////////////////////////////////////////////////////////////////////
// Sloan algorithm with a given starting Vertex.
//
// This algorithm requires user to provide a starting vertex to
// compute Sloan ordering.
//////////////////////////////////////////////////////////////////////////
template < class Graph, class OutputIterator, class ColorMap, class DegreeMap,
class PriorityMap, class Weight >
OutputIterator sloan_ordering(Graph& g,
typename graph_traits< Graph >::vertex_descriptor s,
typename graph_traits< Graph >::vertex_descriptor e,
OutputIterator permutation, ColorMap color, DegreeMap degree,
PriorityMap priority, Weight W1, Weight W2)
{
// typedef typename property_traits<DegreeMap>::value_type Degree;
typedef typename property_traits< PriorityMap >::value_type Degree;
typedef typename property_traits< ColorMap >::value_type ColorValue;
typedef color_traits< ColorValue > Color;
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef typename std::vector<
typename graph_traits< Graph >::vertices_size_type >::iterator vec_iter;
typedef typename graph_traits< Graph >::vertices_size_type size_type;
typedef typename property_map< Graph, vertex_index_t >::const_type VertexID;
// Creating a std-vector for storing the distance from the end vertex in it
typename std::vector< typename graph_traits< Graph >::vertices_size_type >
dist(num_vertices(g), 0);
// Wrap a property_map_iterator around the std::iterator
boost::iterator_property_map< vec_iter, VertexID, size_type, size_type& >
dist_pmap(dist.begin(), get(vertex_index, g));
breadth_first_search(g, e,
visitor(make_bfs_visitor(record_distances(dist_pmap, on_tree_edge()))));
// Creating a property_map for the indices of a vertex
typename property_map< Graph, vertex_index_t >::type index_map
= get(vertex_index, g);
// Sets the color and priority to their initial status
Degree cdeg;
typename graph_traits< Graph >::vertex_iterator ui, ui_end;
for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui)
{
put(color, *ui, Color::white());
cdeg = get(degree, *ui) + 1;
put(priority, *ui, W1 * dist[index_map[*ui]] - W2 * cdeg);
}
// Priority list
typedef indirect_cmp< PriorityMap, std::greater< Degree > > Compare;
Compare comp(priority);
std::list< Vertex > priority_list;
// Some more declarations
typename graph_traits< Graph >::out_edge_iterator ei, ei_end, ei2, ei2_end;
Vertex u, v, w;
put(color, s,
Color::green()); // Sets the color of the starting vertex to gray
priority_list.push_front(s); // Puts s into the priority_list
while (!priority_list.empty())
{
priority_list.sort(comp); // Orders the elements in the priority list in
// an ascending manner
u = priority_list
.front(); // Accesses the last element in the priority list
priority_list
.pop_front(); // Removes the last element in the priority list
if (get(color, u) == Color::green())
{
// for-loop over all out-edges of vertex u
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei)
{
v = target(*ei, g);
put(priority, v, get(priority, v) + W2); // updates the priority
if (get(color, v)
== Color::white()) // test if the vertex is inactive
{
put(color, v,
Color::green()); // giving the vertex a preactive status
priority_list.push_front(
v); // writing the vertex in the priority_queue
}
}
}
// Here starts step 8
*permutation++
= u; // Puts u to the first position in the permutation-vector
put(color, u, Color::black()); // Gives u an inactive status
// for loop over all the adjacent vertices of u
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei)
{
v = target(*ei, g);
if (get(color, v) == Color::green())
{ // tests if the vertex is inactive
put(color, v,
Color::red()); // giving the vertex an active status
put(priority, v, get(priority, v) + W2); // updates the priority
// for loop over alll adjacent vertices of v
for (boost::tie(ei2, ei2_end) = out_edges(v, g); ei2 != ei2_end;
++ei2)
{
w = target(*ei2, g);
if (get(color, w) != Color::black())
{ // tests if vertex is postactive
put(priority, w,
get(priority, w) + W2); // updates the priority
if (get(color, w) == Color::white())
{
put(color, w, Color::green()); // gives the vertex a
// preactive status
priority_list.push_front(
w); // puts the vertex into the priority queue
} // end if
} // end if
} // end for
} // end if
} // end for
} // end while
return permutation;
}
/////////////////////////////////////////////////////////////////////////////////////////
// Same algorithm as before, but without the weights given (taking default
// weights
template < class Graph, class OutputIterator, class ColorMap, class DegreeMap,
class PriorityMap >
OutputIterator sloan_ordering(Graph& g,
typename graph_traits< Graph >::vertex_descriptor s,
typename graph_traits< Graph >::vertex_descriptor e,
OutputIterator permutation, ColorMap color, DegreeMap degree,
PriorityMap priority)
{
return sloan_ordering(
g, s, e, permutation, color, degree, priority, WEIGHT1, WEIGHT2);
}
//////////////////////////////////////////////////////////////////////////
// Sloan algorithm without a given starting Vertex.
//
// This algorithm finds a good starting vertex itself to
// compute Sloan-ordering.
//////////////////////////////////////////////////////////////////////////
template < class Graph, class OutputIterator, class Color, class Degree,
class Priority, class Weight >
inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation,
Color color, Degree degree, Priority priority, Weight W1, Weight W2)
{
typedef typename boost::graph_traits< Graph >::vertex_descriptor Vertex;
Vertex s, e;
e = sloan_start_end_vertices(G, s, color, degree);
return sloan_ordering(
G, s, e, permutation, color, degree, priority, W1, W2);
}
/////////////////////////////////////////////////////////////////////////////////////////
// Same as before, but without given weights (default weights are taken instead)
template < class Graph, class OutputIterator, class Color, class Degree,
class Priority >
inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation,
Color color, Degree degree, Priority priority)
{
return sloan_ordering(
G, permutation, color, degree, priority, WEIGHT1, WEIGHT2);
}
} // namespace boost
#endif // BOOST_GRAPH_SLOAN_HPP
|