1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
// Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_QUADRATURE_DETAIL_OOURA_FOURIER_INTEGRALS_DETAIL_HPP
#define BOOST_MATH_QUADRATURE_DETAIL_OOURA_FOURIER_INTEGRALS_DETAIL_HPP
#include <utility> // for std::pair.
#include <mutex>
#include <atomic>
#include <vector>
#include <iostream>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/special_functions/cos_pi.hpp>
#include <boost/math/constants/constants.hpp>
namespace boost { namespace math { namespace quadrature { namespace detail {
// Ooura and Mori, A robust double exponential formula for Fourier-type integrals,
// eta is the argument to the exponential in equation 3.3:
template<class Real>
std::pair<Real, Real> ooura_eta(Real x, Real alpha) {
using std::expm1;
using std::exp;
using std::abs;
Real expx = exp(x);
Real eta_prime = 2 + alpha/expx + expx/4;
Real eta;
// This is the fast branch:
if (abs(x) > 0.125) {
eta = 2*x - alpha*(1/expx - 1) + (expx - 1)/4;
}
else {// this is the slow branch using expm1 for small x:
eta = 2*x - alpha*expm1(-x) + expm1(x)/4;
}
return {eta, eta_prime};
}
// Ooura and Mori, A robust double exponential formula for Fourier-type integrals,
// equation 3.6:
template<class Real>
Real calculate_ooura_alpha(Real h)
{
using boost::math::constants::pi;
using std::log1p;
using std::sqrt;
Real x = sqrt(16 + 4*log1p(pi<Real>()/h)/h);
return 1/x;
}
template<class Real>
std::pair<Real, Real> ooura_sin_node_and_weight(long n, Real h, Real alpha)
{
using std::expm1;
using std::exp;
using std::abs;
using boost::math::constants::pi;
using std::isnan;
if (n == 0) {
// Equation 44 of https://arxiv.org/pdf/0911.4796.pdf
// Fourier Transform of the Stretched Exponential Function: Analytic Error Bounds,
// Double Exponential Transform, and Open-Source Implementation,
// Joachim Wuttke,
// The C library libkww provides functions to compute the Kohlrausch-Williams-Watts function,
// the Laplace-Fourier transform of the stretched (or compressed) exponential function exp(-t^beta)
// for exponent beta between 0.1 and 1.9 with sixteen decimal digits accuracy.
Real eta_prime_0 = Real(2) + alpha + Real(1)/Real(4);
Real node = pi<Real>()/(eta_prime_0*h);
Real weight = pi<Real>()*boost::math::sin_pi(1/(eta_prime_0*h));
Real eta_dbl_prime = -alpha + Real(1)/Real(4);
Real phi_prime_0 = (1 - eta_dbl_prime/(eta_prime_0*eta_prime_0))/2;
weight *= phi_prime_0;
return {node, weight};
}
Real x = n*h;
auto p = ooura_eta(x, alpha);
auto eta = p.first;
auto eta_prime = p.second;
Real expm1_meta = expm1(-eta);
Real exp_meta = exp(-eta);
Real node = -n*pi<Real>()/expm1_meta;
// I have verified that this is not a significant source of inaccuracy in the weight computation:
Real phi_prime = -(expm1_meta + x*exp_meta*eta_prime)/(expm1_meta*expm1_meta);
// The main source of inaccuracy is in computation of sin_pi.
// But I've agonized over this, and I think it's as good as it can get:
Real s = pi<Real>();
Real arg;
if(eta > 1) {
arg = n/( 1/exp_meta - 1 );
s *= boost::math::sin_pi(arg);
if (n&1) {
s *= -1;
}
}
else if (eta < -1) {
arg = n/(1-exp_meta);
s *= boost::math::sin_pi(arg);
}
else {
arg = -n*exp_meta/expm1_meta;
s *= boost::math::sin_pi(arg);
if (n&1) {
s *= -1;
}
}
Real weight = s*phi_prime;
return {node, weight};
}
#ifdef BOOST_MATH_INSTRUMENT_OOURA
template<class Real>
void print_ooura_estimate(size_t i, Real I0, Real I1, Real omega) {
using std::abs;
std::cout << std::defaultfloat
<< std::setprecision(std::numeric_limits<Real>::digits10)
<< std::fixed;
std::cout << "h = " << Real(1)/Real(1<<i) << ", I_h = " << I0/omega
<< " = " << std::hexfloat << I0/omega << ", absolute error estimate = "
<< std::defaultfloat << std::scientific << abs(I0-I1) << std::endl;
}
#endif
template<class Real>
std::pair<Real, Real> ooura_cos_node_and_weight(long n, Real h, Real alpha)
{
using std::expm1;
using std::exp;
using std::abs;
using boost::math::constants::pi;
Real x = h*(n-Real(1)/Real(2));
auto p = ooura_eta(x, alpha);
auto eta = p.first;
auto eta_prime = p.second;
Real expm1_meta = expm1(-eta);
Real exp_meta = exp(-eta);
Real node = pi<Real>()*(Real(1)/Real(2)-n)/expm1_meta;
Real phi_prime = -(expm1_meta + x*exp_meta*eta_prime)/(expm1_meta*expm1_meta);
// Takuya Ooura and Masatake Mori,
// Journal of Computational and Applied Mathematics, 112 (1999) 229-241.
// A robust double exponential formula for Fourier-type integrals.
// Equation 4.6
Real s = pi<Real>();
Real arg;
if (eta < -1) {
arg = -(n-Real(1)/Real(2))/expm1_meta;
s *= boost::math::cos_pi(arg);
}
else {
arg = -(n-Real(1)/Real(2))*exp_meta/expm1_meta;
s *= boost::math::sin_pi(arg);
if (n&1) {
s *= -1;
}
}
Real weight = s*phi_prime;
return {node, weight};
}
template<class Real>
class ooura_fourier_sin_detail {
public:
ooura_fourier_sin_detail(const Real relative_error_goal, size_t levels) {
#ifdef BOOST_MATH_INSTRUMENT_OOURA
std::cout << "ooura_fourier_sin with relative error goal " << relative_error_goal
<< " & " << levels << " levels." << std::endl;
#endif // BOOST_MATH_INSTRUMENT_OOURA
if (relative_error_goal < std::numeric_limits<Real>::epsilon() * 2) {
throw std::domain_error("The relative error goal cannot be smaller than the unit roundoff.");
}
using std::abs;
requested_levels_ = levels;
starting_level_ = 0;
rel_err_goal_ = relative_error_goal;
big_nodes_.reserve(levels);
bweights_.reserve(levels);
little_nodes_.reserve(levels);
lweights_.reserve(levels);
for (size_t i = 0; i < levels; ++i) {
if (std::is_same<Real, float>::value) {
add_level<double>(i);
}
else if (std::is_same<Real, double>::value) {
add_level<long double>(i);
}
else {
add_level<Real>(i);
}
}
}
std::vector<std::vector<Real>> const & big_nodes() const {
return big_nodes_;
}
std::vector<std::vector<Real>> const & weights_for_big_nodes() const {
return bweights_;
}
std::vector<std::vector<Real>> const & little_nodes() const {
return little_nodes_;
}
std::vector<std::vector<Real>> const & weights_for_little_nodes() const {
return lweights_;
}
template<class F>
std::pair<Real,Real> integrate(F const & f, Real omega) {
using std::abs;
using std::max;
using boost::math::constants::pi;
if (omega == 0) {
return {Real(0), Real(0)};
}
if (omega < 0) {
auto p = this->integrate(f, -omega);
return {-p.first, p.second};
}
Real I1 = std::numeric_limits<Real>::quiet_NaN();
Real relative_error_estimate = std::numeric_limits<Real>::quiet_NaN();
// As we compute integrals, we learn about their structure.
// Assuming we compute f(t)sin(wt) for many different omega, this gives some
// a posteriori ability to choose a refinement level that is roughly appropriate.
size_t i = starting_level_;
do {
Real I0 = estimate_integral(f, omega, i);
#ifdef BOOST_MATH_INSTRUMENT_OOURA
print_ooura_estimate(i, I0, I1, omega);
#endif
Real absolute_error_estimate = abs(I0-I1);
Real scale = (max)(abs(I0), abs(I1));
if (!isnan(I1) && absolute_error_estimate <= rel_err_goal_*scale) {
starting_level_ = (max)(long(i) - 1, long(0));
return {I0/omega, absolute_error_estimate/scale};
}
I1 = I0;
} while(++i < big_nodes_.size());
// We've used up all our precomputed levels.
// Now we need to add more.
// It might seems reasonable to just keep adding levels indefinitely, if that's what the user wants.
// But in fact the nodes and weights just merge into each other and the error gets worse after a certain number.
// This value for max_additional_levels was chosen by observation of a slowly converging oscillatory integral:
// f(x) := cos(7cos(x))sin(x)/x
size_t max_additional_levels = 4;
while (big_nodes_.size() < requested_levels_ + max_additional_levels) {
size_t ii = big_nodes_.size();
if (std::is_same<Real, float>::value) {
add_level<double>(ii);
}
else if (std::is_same<Real, double>::value) {
add_level<long double>(ii);
}
else {
add_level<Real>(ii);
}
Real I0 = estimate_integral(f, omega, ii);
Real absolute_error_estimate = abs(I0-I1);
Real scale = (max)(abs(I0), abs(I1));
#ifdef BOOST_MATH_INSTRUMENT_OOURA
print_ooura_estimate(ii, I0, I1, omega);
#endif
if (absolute_error_estimate <= rel_err_goal_*scale) {
starting_level_ = (max)(long(ii) - 1, long(0));
return {I0/omega, absolute_error_estimate/scale};
}
I1 = I0;
++ii;
}
starting_level_ = static_cast<long>(big_nodes_.size() - 2);
return {I1/omega, relative_error_estimate};
}
private:
template<class PreciseReal>
void add_level(size_t i) {
using std::abs;
size_t current_num_levels = big_nodes_.size();
Real unit_roundoff = std::numeric_limits<Real>::epsilon()/2;
// h0 = 1. Then all further levels have h_i = 1/2^i.
// Since the nodes don't nest, we could conceivably divide h by (say) 1.5, or 3.
// It's not clear how much benefit (or loss) would be obtained from this.
PreciseReal h = PreciseReal(1)/PreciseReal(1<<i);
std::vector<Real> bnode_row;
std::vector<Real> bweight_row;
// This is a pretty good estimate for how many elements will be placed in the vector:
bnode_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
bweight_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
std::vector<Real> lnode_row;
std::vector<Real> lweight_row;
lnode_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
lweight_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
Real max_weight = 1;
auto alpha = calculate_ooura_alpha(h);
long n = 0;
Real w;
do {
auto precise_nw = ooura_sin_node_and_weight(n, h, alpha);
Real node = static_cast<Real>(precise_nw.first);
Real weight = static_cast<Real>(precise_nw.second);
w = weight;
if (bnode_row.size() == bnode_row.capacity()) {
bnode_row.reserve(2*bnode_row.size());
bweight_row.reserve(2*bnode_row.size());
}
bnode_row.push_back(node);
bweight_row.push_back(weight);
if (abs(weight) > max_weight) {
max_weight = abs(weight);
}
++n;
// f(t)->0 as t->infty, which is why the weights are computed up to the unit roundoff.
} while(abs(w) > unit_roundoff*max_weight);
// This class tends to consume a lot of memory; shrink the vectors back down to size:
bnode_row.shrink_to_fit();
bweight_row.shrink_to_fit();
// Why we are splitting the nodes into regimes where t_n >> 1 and t_n << 1?
// It will create the opportunity to sensibly truncate the quadrature sum to significant terms.
n = -1;
do {
auto precise_nw = ooura_sin_node_and_weight(n, h, alpha);
Real node = static_cast<Real>(precise_nw.first);
if (node <= 0) {
break;
}
Real weight = static_cast<Real>(precise_nw.second);
w = weight;
using std::isnan;
if (isnan(node)) {
// This occurs at n = -11 in quad precision:
break;
}
if (lnode_row.size() > 0) {
if (lnode_row[lnode_row.size()-1] == node) {
// The nodes have fused into each other:
break;
}
}
if (lnode_row.size() == lnode_row.capacity()) {
lnode_row.reserve(2*lnode_row.size());
lweight_row.reserve(2*lnode_row.size());
}
lnode_row.push_back(node);
lweight_row.push_back(weight);
if (abs(weight) > max_weight) {
max_weight = abs(weight);
}
--n;
// f(t)->infty is possible as t->0, hence compute up to the min.
} while(abs(w) > (std::numeric_limits<Real>::min)()*max_weight);
lnode_row.shrink_to_fit();
lweight_row.shrink_to_fit();
// std::scoped_lock once C++17 is more common?
std::lock_guard<std::mutex> lock(node_weight_mutex_);
// Another thread might have already finished this calculation and appended it to the nodes/weights:
if (current_num_levels == big_nodes_.size()) {
big_nodes_.push_back(bnode_row);
bweights_.push_back(bweight_row);
little_nodes_.push_back(lnode_row);
lweights_.push_back(lweight_row);
}
}
template<class F>
Real estimate_integral(F const & f, Real omega, size_t i) {
// Because so few function evaluations are required to get high accuracy on the integrals in the tests,
// Kahan summation doesn't really help.
//auto cond = boost::math::tools::summation_condition_number<Real, true>(0);
Real I0 = 0;
auto const & b_nodes = big_nodes_[i];
auto const & b_weights = bweights_[i];
// Will benchmark if this is helpful:
Real inv_omega = 1/omega;
for(size_t j = 0 ; j < b_nodes.size(); ++j) {
I0 += f(b_nodes[j]*inv_omega)*b_weights[j];
}
auto const & l_nodes = little_nodes_[i];
auto const & l_weights = lweights_[i];
// If f decays rapidly as |t|->infty, not all of these calls are necessary.
for (size_t j = 0; j < l_nodes.size(); ++j) {
I0 += f(l_nodes[j]*inv_omega)*l_weights[j];
}
return I0;
}
std::mutex node_weight_mutex_;
// Nodes for n >= 0, giving t_n = pi*phi(nh)/h. Generally t_n >> 1.
std::vector<std::vector<Real>> big_nodes_;
// The term bweights_ will indicate that these are weights corresponding
// to the big nodes:
std::vector<std::vector<Real>> bweights_;
// Nodes for n < 0: Generally t_n << 1, and an invariant is that t_n > 0.
std::vector<std::vector<Real>> little_nodes_;
std::vector<std::vector<Real>> lweights_;
Real rel_err_goal_;
std::atomic<long> starting_level_;
size_t requested_levels_;
};
template<class Real>
class ooura_fourier_cos_detail {
public:
ooura_fourier_cos_detail(const Real relative_error_goal, size_t levels) {
#ifdef BOOST_MATH_INSTRUMENT_OOURA
std::cout << "ooura_fourier_cos with relative error goal " << relative_error_goal
<< " & " << levels << " levels." << std::endl;
std::cout << "epsilon for type = " << std::numeric_limits<Real>::epsilon() << std::endl;
#endif // BOOST_MATH_INSTRUMENT_OOURA
if (relative_error_goal < std::numeric_limits<Real>::epsilon() * 2) {
throw std::domain_error("The relative error goal cannot be smaller than the unit roundoff!");
}
using std::abs;
requested_levels_ = levels;
starting_level_ = 0;
rel_err_goal_ = relative_error_goal;
big_nodes_.reserve(levels);
bweights_.reserve(levels);
little_nodes_.reserve(levels);
lweights_.reserve(levels);
for (size_t i = 0; i < levels; ++i) {
if (std::is_same<Real, float>::value) {
add_level<double>(i);
}
else if (std::is_same<Real, double>::value) {
add_level<long double>(i);
}
else {
add_level<Real>(i);
}
}
}
template<class F>
std::pair<Real,Real> integrate(F const & f, Real omega) {
using std::abs;
using std::max;
using boost::math::constants::pi;
if (omega == 0) {
throw std::domain_error("At omega = 0, the integral is not oscillatory. The user must choose an appropriate method for this case.\n");
}
if (omega < 0) {
return this->integrate(f, -omega);
}
Real I1 = std::numeric_limits<Real>::quiet_NaN();
Real absolute_error_estimate = std::numeric_limits<Real>::quiet_NaN();
Real scale = std::numeric_limits<Real>::quiet_NaN();
size_t i = starting_level_;
do {
Real I0 = estimate_integral(f, omega, i);
#ifdef BOOST_MATH_INSTRUMENT_OOURA
print_ooura_estimate(i, I0, I1, omega);
#endif
absolute_error_estimate = abs(I0-I1);
scale = (max)(abs(I0), abs(I1));
if (!isnan(I1) && absolute_error_estimate <= rel_err_goal_*scale) {
starting_level_ = (max)(long(i) - 1, long(0));
return {I0/omega, absolute_error_estimate/scale};
}
I1 = I0;
} while(++i < big_nodes_.size());
size_t max_additional_levels = 4;
while (big_nodes_.size() < requested_levels_ + max_additional_levels) {
size_t ii = big_nodes_.size();
if (std::is_same<Real, float>::value) {
add_level<double>(ii);
}
else if (std::is_same<Real, double>::value) {
add_level<long double>(ii);
}
else {
add_level<Real>(ii);
}
Real I0 = estimate_integral(f, omega, ii);
#ifdef BOOST_MATH_INSTRUMENT_OOURA
print_ooura_estimate(ii, I0, I1, omega);
#endif
absolute_error_estimate = abs(I0-I1);
scale = (max)(abs(I0), abs(I1));
if (absolute_error_estimate <= rel_err_goal_*scale) {
starting_level_ = (max)(long(ii) - 1, long(0));
return {I0/omega, absolute_error_estimate/scale};
}
I1 = I0;
++ii;
}
starting_level_ = static_cast<long>(big_nodes_.size() - 2);
return {I1/omega, absolute_error_estimate/scale};
}
private:
template<class PreciseReal>
void add_level(size_t i) {
using std::abs;
size_t current_num_levels = big_nodes_.size();
Real unit_roundoff = std::numeric_limits<Real>::epsilon()/2;
PreciseReal h = PreciseReal(1)/PreciseReal(1<<i);
std::vector<Real> bnode_row;
std::vector<Real> bweight_row;
bnode_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
bweight_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
std::vector<Real> lnode_row;
std::vector<Real> lweight_row;
lnode_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
lweight_row.reserve((static_cast<size_t>(1)<<i)*sizeof(Real));
Real max_weight = 1;
auto alpha = calculate_ooura_alpha(h);
long n = 0;
Real w;
do {
auto precise_nw = ooura_cos_node_and_weight(n, h, alpha);
Real node = static_cast<Real>(precise_nw.first);
Real weight = static_cast<Real>(precise_nw.second);
w = weight;
if (bnode_row.size() == bnode_row.capacity()) {
bnode_row.reserve(2*bnode_row.size());
bweight_row.reserve(2*bnode_row.size());
}
bnode_row.push_back(node);
bweight_row.push_back(weight);
if (abs(weight) > max_weight) {
max_weight = abs(weight);
}
++n;
// f(t)->0 as t->infty, which is why the weights are computed up to the unit roundoff.
} while(abs(w) > unit_roundoff*max_weight);
bnode_row.shrink_to_fit();
bweight_row.shrink_to_fit();
n = -1;
do {
auto precise_nw = ooura_cos_node_and_weight(n, h, alpha);
Real node = static_cast<Real>(precise_nw.first);
// The function cannot be singular at zero,
// so zero is not a unreasonable node,
// unlike in the case of the Fourier Sine.
// Hence only break if the node is negative.
if (node < 0) {
break;
}
Real weight = static_cast<Real>(precise_nw.second);
w = weight;
if (lnode_row.size() > 0) {
if (lnode_row.back() == node) {
// The nodes have fused into each other:
break;
}
}
if (lnode_row.size() == lnode_row.capacity()) {
lnode_row.reserve(2*lnode_row.size());
lweight_row.reserve(2*lnode_row.size());
}
lnode_row.push_back(node);
lweight_row.push_back(weight);
if (abs(weight) > max_weight) {
max_weight = abs(weight);
}
--n;
} while(abs(w) > (std::numeric_limits<Real>::min)()*max_weight);
lnode_row.shrink_to_fit();
lweight_row.shrink_to_fit();
std::lock_guard<std::mutex> lock(node_weight_mutex_);
// Another thread might have already finished this calculation and appended it to the nodes/weights:
if (current_num_levels == big_nodes_.size()) {
big_nodes_.push_back(bnode_row);
bweights_.push_back(bweight_row);
little_nodes_.push_back(lnode_row);
lweights_.push_back(lweight_row);
}
}
template<class F>
Real estimate_integral(F const & f, Real omega, size_t i) {
Real I0 = 0;
auto const & b_nodes = big_nodes_[i];
auto const & b_weights = bweights_[i];
Real inv_omega = 1/omega;
for(size_t j = 0 ; j < b_nodes.size(); ++j) {
I0 += f(b_nodes[j]*inv_omega)*b_weights[j];
}
auto const & l_nodes = little_nodes_[i];
auto const & l_weights = lweights_[i];
for (size_t j = 0; j < l_nodes.size(); ++j) {
I0 += f(l_nodes[j]*inv_omega)*l_weights[j];
}
return I0;
}
std::mutex node_weight_mutex_;
std::vector<std::vector<Real>> big_nodes_;
std::vector<std::vector<Real>> bweights_;
std::vector<std::vector<Real>> little_nodes_;
std::vector<std::vector<Real>> lweights_;
Real rel_err_goal_;
std::atomic<long> starting_level_;
size_t requested_levels_;
};
}}}}
#endif
|