1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning(disable : 4756) // overflow in constant arithmetic
// Constants are too big for float case, but this doesn't matter for test.
#endif
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class Real, typename T>
void do_test_ellint_f(T& data, const char* type_name, const char* test)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_1_FUNCTION_TO_TEST))
typedef Real value_type;
std::cout << "Testing: " << test << std::endl;
#ifdef ELLINT_1_FUNCTION_TO_TEST
value_type(*fp2)(value_type, value_type) = ELLINT_1_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
value_type (*fp2)(value_type, value_type) = boost::math::ellint_1<value_type, value_type>;
#else
value_type (*fp2)(value_type, value_type) = boost::math::ellint_1;
#endif
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp2, 1, 0),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "ellint_1", test);
std::cout << std::endl;
#endif
}
template <class Real, typename T>
void do_test_ellint_k(T& data, const char* type_name, const char* test)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_1C_FUNCTION_TO_TEST))
typedef Real value_type;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing: " << test << std::endl;
#ifdef ELLINT_1C_FUNCTION_TO_TEST
value_type(*fp1)(value_type) = ELLINT_1C_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
value_type (*fp1)(value_type) = boost::math::ellint_1<value_type>;
#else
value_type (*fp1)(value_type) = boost::math::ellint_1;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(fp1, 0),
extract_result<Real>(1));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "ellint_1 (complete)", test);
std::cout << std::endl;
#endif
}
template <typename T>
void test_spots(T, const char* type_name)
{
// Function values calculated on http://functions.wolfram.com/
// Note that Mathematica's EllipticF accepts k^2 as the second parameter.
static const boost::array<boost::array<typename table_type<T>::type, 3>, 22> data1 = {{
{{ SC_(0.0), SC_(0.0), SC_(0.0) }},
{{ SC_(-10.0), SC_(0.0), SC_(-10.0) }},
{{ SC_(-1.0), SC_(-1.0), SC_(-1.2261911708835170708130609674719067527242483502207) }},
{{ SC_(-4.0), SC_(0.875), SC_(-5.3190556182262405182189463092940736859067548232647) }},
{{ SC_(8.0), SC_(-0.625), SC_(9.0419973860310100524448893214394562615252527557062) }},
{{ SC_(1e-05), SC_(0.875), SC_(0.000010000000000127604166668510945638036143355898993088) }},
{{ SC_(1e+05), SC_(0.009765625) /*T(10)/1024*/, SC_(100002.38431454899771096037307519328741455615271038) }},
{{ SC_(1e-20), SC_(1.0), SC_(1.0000000000000000000000000000000000000000166666667e-20) }},
{{ SC_(1e-20), SC_(1e-20), SC_(1.000000000000000e-20) }},
{{ SC_(1e+20), SC_(0.390625) /*T(400)/1024*/, SC_(1.0418143796499216839719289963154558027005142709763e20) }},
{{ SC_(1e+50), SC_(0.875), SC_(1.3913251718238765549409892714295358043696028445944e50) }},
{{ SC_(2.0), SC_(0.5), SC_(2.1765877052210673672479877957388515321497888026770) }},
{{ SC_(4.0), SC_(0.5), SC_(4.2543274975235836861894752787874633017836785640477) }},
{{ SC_(6.0), SC_(0.5), SC_(6.4588766202317746302999080620490579800463614807916) }},
{{ SC_(10.0), SC_(0.5), SC_(10.697409951222544858346795279378531495869386960090) }},
{{ SC_(-2.0), SC_(0.5), SC_(-2.1765877052210673672479877957388515321497888026770) }},
{{ SC_(-4.0), SC_(0.5), SC_(-4.2543274975235836861894752787874633017836785640477) }},
{{ SC_(-6.0), SC_(0.5), SC_(-6.4588766202317746302999080620490579800463614807916) }},
{{ SC_(-10.0), SC_(0.5), SC_(-10.697409951222544858346795279378531495869386960090) }},
// Some values where k is > 1:
{{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(1.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(0.154661869446904722070471580919758948531148566762183486996920)}},
{{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(1.461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461), SC_(0.155166467455029577314314021156113481657713115640002027219)}},
{{ SC_(0.1538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538), SC_(2.461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461), SC_(0.15776272074094290829870142225970052217542486917945444918)}},
}};
do_test_ellint_f<T>(data1, type_name, "Elliptic Integral F: Mathworld Data");
#include "ellint_f_data.ipp"
do_test_ellint_f<T>(ellint_f_data, type_name, "Elliptic Integral F: Random Data");
// Function values calculated on http://functions.wolfram.com/
// Note that Mathematica's EllipticK accepts k^2 as the second parameter.
static const boost::array<boost::array<typename table_type<T>::type, 2>, 9> data2 = {{
{{ SC_(0.0), SC_(1.5707963267948966192313216916397514420985846996876) }},
{{ SC_(0.125), SC_(1.5769867712158131421244030532288080803822271060839) }},
{{ SC_(0.25), SC_(1.5962422221317835101489690714979498795055744578951) }},
{{ SC_(0.29296875) /*T(300)/1024*/, SC_(1.6062331054696636704261124078746600894998873503208) }},
{{ SC_(0.390625) /*T(400)/1024*/, SC_(1.6364782007562008756208066125715722889067992997614) }},
{{ SC_(-0.5), SC_(1.6857503548125960428712036577990769895008008941411) }},
{{ SC_(-0.75), SC_(1.9109897807518291965531482187613425592531451316788) }},
{{ SC_(0.875) /*1-T(1)/8*/, SC_(2.185488469278223686913080323730158689730428415766) }},
{{ SC_(0.9990234375) /*1-T(1)/1024*/, SC_(4.5074135978990422666372495313621124487894807327687) }},
}};
do_test_ellint_k<T>(data2, type_name, "Elliptic Integral K: Mathworld Data");
#include "ellint_k_data.ipp"
do_test_ellint_k<T>(ellint_k_data, type_name, "Elliptic Integral K: Random Data");
//
// Test error handling:
//
BOOST_CHECK_GE(boost::math::ellint_1(T(1)), boost::math::tools::max_value<T>());
BOOST_CHECK_GE(boost::math::ellint_1(T(-1)), boost::math::tools::max_value<T>());
BOOST_CHECK_THROW(boost::math::ellint_1(T(1.0001)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_1(T(-1.0001)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_1(T(2.2), T(0.5)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_1(T(-2.2), T(0.5)), std::domain_error);
}
|