1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\
}\
}
template <class Real, class T>
void do_test_gamma_2(const T& data, const char* type_name, const char* test_name)
{
//
// test gamma_p_inv(T, T) against data:
//
using namespace std;
typedef Real value_type;
std::cout << test_name << " with type " << type_name << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete gamma is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(Real(data[i][5]) == 0)
BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), value_type(0));
else if((1 - Real(data[i][5]) > 0.001)
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i);
}
else if(1 == Real(data[i][5]))
BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
else
{
// not enough bits in our input to get back to x, but we should be in
// the same ball park:
value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100000, i);
}
if(Real(data[i][3]) == 0)
BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
else if((1 - Real(data[i][3]) > 0.001) && (fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>()))
{
value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3]));
BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i);
}
else if(1 == Real(data[i][3]))
BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), value_type(0));
else if(fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>())
{
// not enough bits in our input to get back to x, but we should be in
// the same ball park:
value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3]));
BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100, i);
}
}
std::cout << std::endl;
}
template <class Real, class T>
void do_test_gamma_inv(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(GAMMAP_INV_FUNCTION_TO_TEST))
typedef Real value_type;
typedef value_type (*pg)(value_type, value_type);
#ifdef GAMMAP_INV_FUNCTION_TO_TEST
pg funcp = GAMMAP_INV_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::gamma_p_inv<value_type, value_type>;
#else
pg funcp = boost::math::gamma_p_inv;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test gamma_p_inv(T, T) against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_p_inv", test_name);
//
// test gamma_q_inv(T, T) against data:
//
#ifdef GAMMAQ_INV_FUNCTION_TO_TEST
funcp = GAMMAQ_INV_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::gamma_q_inv<value_type, value_type>;
#else
funcp = boost::math::gamma_q_inv;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_q_inv", test_name);
#endif
}
template <class T>
void test_gamma(T, const char* name)
{
#if !defined(TEST_UDT) && !defined(ERROR_REPORTING_MODE)
//
// The actual test data is rather verbose, so it's in a separate file
//
// First the data for the incomplete gamma function, each
// row has the following 6 entries:
// Parameter a, parameter z,
// Expected tgamma(a, z), Expected gamma_q(a, z)
// Expected tgamma_lower(a, z), Expected gamma_p(a, z)
//
# include "igamma_med_data.ipp"
do_test_gamma_2<T>(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values");
# include "igamma_small_data.ipp"
do_test_gamma_2<T>(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values");
# include "igamma_big_data.ipp"
do_test_gamma_2<T>(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values");
#endif
# include "gamma_inv_data.ipp"
do_test_gamma_inv<T>(gamma_inv_data, name, "incomplete gamma inverse(a, z) medium values");
# include "gamma_inv_big_data.ipp"
do_test_gamma_inv<T>(gamma_inv_big_data, name, "incomplete gamma inverse(a, z) large values");
# include "gamma_inv_small_data.ipp"
do_test_gamma_inv<T>(gamma_inv_small_data, name, "incomplete gamma inverse(a, z) small values");
}
template <class T>
void test_spots(T, const char* type_name)
{
std::cout << "Running spot checks for type " << type_name << std::endl;
//
// basic sanity checks, tolerance is 150 epsilon expressed as a percentage:
//
T tolerance = boost::math::tools::epsilon<T>() * 15000;
if(tolerance < 1e-25f)
tolerance = 1e-25f; // limit of test data?
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(1.0/128)), static_cast<T>(0.35767144525455121503672919307647515332256996883787L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(0.5)), static_cast<T>(4.4655350189103486773248562646452806745879516124613e-31L), tolerance*10);
//
// We can't test in this region against Mathworld's data as the results produced
// by functions.wolfram.com appear to be in error, and do *not* round trip with
// their own version of gamma_q. Using our output from the inverse as input to
// their version of gamma_q *does* round trip however. It should be pointed out
// that the functions in this area are very sensitive with nearly infinite
// first derivatives, it's also questionable how useful these functions are
// in this part of the domain.
//
//BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1e-2), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.8106736649978161389878528903698068142257930575497e-181L), tolerance);
//
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/128)), static_cast<T>(3.5379794687984498627918583429482809311448951189097L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/2)), static_cast<T>(0.22746821155978637597125832348982469815821055329511L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0-1.0/128)), static_cast<T>(0.000047938431649305382237483273209405461203600840052182L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/128)), static_cast<T>(19.221865946801723949866005318845155649972164294057L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/2)), static_cast<T>(9.6687146147141311517500637401166726067778162022664L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.9754602513640844712089002210120603689809432130520L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/128)), static_cast<T>(10243.369973939134157953734588122880006091919872879L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/2)), static_cast<T>(9999.6666686420474237369661574633153551436435884101L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0-1.0/128)), static_cast<T>(9759.8597223369324083191194574874497413261589080204L), tolerance);
}
|