File: hypergeometric_luke_algorithms.cpp

package info (click to toggle)
boost1.74 1.74.0-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 464,084 kB
  • sloc: cpp: 3,338,324; xml: 131,293; python: 33,088; ansic: 14,336; asm: 4,034; sh: 3,351; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (801 lines) | stat: -rw-r--r-- 26,915 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

///////////////////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2013 - 2014.
// Copyright John Maddock 2013.
// Distributed under the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This work is based on an earlier work:
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
//

#include <algorithm>
#include <cstdint>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
#include <boost/math/constants/constants.hpp>
#include <boost/noncopyable.hpp>

//#define USE_CPP_BIN_FLOAT
#define USE_CPP_DEC_FLOAT
//#define USE_MPFR

#if !defined(DIGIT_COUNT)
#define DIGIT_COUNT 100
#endif

#if !defined(BOOST_NO_CXX11_HDR_CHRONO)
  #include <chrono>
  #define STD_CHRONO std::chrono
#else
  #include <boost/chrono.hpp>
  #define STD_CHRONO boost::chrono
#endif

#if defined(USE_CPP_BIN_FLOAT)
  #include <boost/multiprecision/cpp_bin_float.hpp>
  typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<DIGIT_COUNT + 10> > mp_type;
#elif defined(USE_CPP_DEC_FLOAT)
  #include <boost/multiprecision/cpp_dec_float.hpp>
  typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<DIGIT_COUNT + 10> > mp_type;
#elif defined(USE_MPFR)
  #include <boost/multiprecision/mpfr.hpp>
  typedef boost::multiprecision::number<boost::multiprecision::mpfr_float_backend<DIGIT_COUNT + 10> > mp_type;
#else
  #error no multiprecision floating type is defined
#endif

template <class clock_type>
struct stopwatch
{
public:
  typedef typename clock_type::duration duration_type;

  stopwatch() : m_start(clock_type::now()) { }

  stopwatch(const stopwatch& other) : m_start(other.m_start) { }

  stopwatch& operator=(const stopwatch& other)
  {
    m_start = other.m_start;
    return *this;
  }

  ~stopwatch() { }

  duration_type elapsed() const
  {
    return (clock_type::now() - m_start);
  }

  void reset()
  {
    m_start = clock_type::now();
  }

private:
  typename clock_type::time_point m_start;
};

namespace my_math
{
  template<class T> T chebyshev_t(const std::int32_t n, const T& x);

  template<class T> T chebyshev_t(const std::uint32_t n, const T& x, std::vector<T>* vp);

  template<class T> bool isneg(const T& x) { return (x < T(0)); }

  template<class T> const T& zero() { static const T value_zero(0); return value_zero; }
  template<class T> const T& one () { static const T value_one (1); return value_one; }
  template<class T> const T& two () { static const T value_two (2); return value_two; }
}

namespace orthogonal_polynomial_series
{
  template<typename T> static inline T orthogonal_polynomial_template(const T& x, const std::uint32_t n, std::vector<T>* const vp = static_cast<std::vector<T>*>(0u))
  {
    // Compute the value of an orthogonal chebyshev polinomial.
    // Use stable upward recursion.

    if(vp != nullptr)
    {
      vp->clear();
      vp->reserve(static_cast<std::size_t>(n + 1u));
    }

    T y0 = my_math::one<T>();

    if(vp != nullptr) { vp->push_back(y0); }

    if(n == static_cast<std::uint32_t>(0u))
    {
      return y0;
    }

    T y1 = x;

    if(vp != nullptr) { vp->push_back(y1); }

    if(n == static_cast<std::uint32_t>(1u))
    {
      return y1;
    }

    T a = my_math::two <T>();
    T b = my_math::zero<T>();
    T c = my_math::one <T>();

    T yk;

    // Calculate higher orders using the recurrence relation.
    // The direction of stability is upward recursion.
    for(std::int32_t k = static_cast<std::int32_t>(2); k <= static_cast<std::int32_t>(n); ++k)
    {
      yk = (((a * x) + b) * y1) - (c * y0);

      y0 = y1;
      y1 = yk;

      if(vp != nullptr) { vp->push_back(yk); }
    }

    return yk;
  }
}

template<class T> T my_math::chebyshev_t(const std::int32_t n, const T& x)
{
  if(my_math::isneg(x))
  {
    const bool b_negate = ((n % static_cast<std::int32_t>(2)) != static_cast<std::int32_t>(0));

    const T y = chebyshev_t(n, -x);

    return (!b_negate ? y : -y);
  }

  if(n < static_cast<std::int32_t>(0))
  {
    const std::int32_t nn = static_cast<std::int32_t>(-n);

    return chebyshev_t(nn, x);
  }
  else
  {
    return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::uint32_t>(n));
  }
}

template<class T> T my_math::chebyshev_t(const std::uint32_t n, const T& x, std::vector<T>* const vp) { return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::int32_t>(n),  vp); }

namespace util
{
  template <class T> float digit_scale()
  {
    const int d = ((std::max)(std::numeric_limits<T>::digits10, 15));
    return static_cast<float>(d) / 300.0F;
  }
}

namespace examples
{
  namespace nr_006
  {
    template<typename T> class hypergeometric_pfq_base : private boost::noncopyable
    {
    public:
      virtual ~hypergeometric_pfq_base() { }

      virtual void ccoef() const = 0;

      virtual T series() const
      {
        using my_math::chebyshev_t;

        // Compute the Chebyshev coefficients.
        // Get the values of the shifted Chebyshev polynomials.
        std::vector<T> chebyshev_t_shifted_values;
        const T z_shifted = ((Z / W) * static_cast<std::int32_t>(2)) - static_cast<std::int32_t>(1);

        chebyshev_t(static_cast<std::uint32_t>(C.size()),
                    z_shifted,
                    &chebyshev_t_shifted_values);

        // Luke: C     ---------- COMPUTE SCALE FACTOR                       ----------
        // Luke: C
        // Luke: C     ---------- SCALE THE COEFFICIENTS                     ----------
        // Luke: C

        // The coefficient scaling is preformed after the Chebyshev summation,
        // and it is carried out with a single division operation.
        bool b_neg = false;

        const T scale = std::accumulate(C.begin(),
                                        C.end(),
                                        T(0),
                                        [&b_neg](T scale_sum, const T& ck) -> T
                                        {
                                          ((!b_neg) ? (scale_sum += ck) : (scale_sum -= ck));
                                          b_neg = (!b_neg);
                                          return scale_sum;
                                        });

        // Compute the result of the series expansion using unscaled coefficients.
        const T sum = std::inner_product(C.begin(),
                                         C.end(),
                                         chebyshev_t_shifted_values.begin(),
                                         T(0));

        // Return the properly scaled result.
        return sum / scale;
      }

    protected:
      const   T             Z;
      const   T             W;
      mutable std::deque<T> C;

      hypergeometric_pfq_base(const T& z,
                              const T& w) : Z(z),
                                            W(w),
                                            C(0u) { }

      virtual std::int32_t N() const { return static_cast<std::int32_t>(util::digit_scale<T>() * 500.0F); }
    };

    template<typename T> class ccoef4_hypergeometric_0f1 : public hypergeometric_pfq_base<T>
    {
    public:
      ccoef4_hypergeometric_0f1(const T& c,
                                const T& z,
                                const T& w) : hypergeometric_pfq_base<T>(z, w),
                                              CP(c) { }

      virtual ~ccoef4_hypergeometric_0f1() { }

      virtual void ccoef() const
      {
        // See Luke 1977 page 80.
        const std::int32_t N1 = static_cast<std::int32_t>(this->N() + static_cast<std::int32_t>(1));
        const std::int32_t N2 = static_cast<std::int32_t>(this->N() + static_cast<std::int32_t>(2));

        // Luke: C     ---------- START COMPUTING COEFFICIENTS USING         ----------
        // Luke: C     ---------- BACKWARD RECURRENCE SCHEME                 ----------
        // Luke: C
        T A3(0);
        T A2(0);
        T A1(boost::math::tools::root_epsilon<T>());

        hypergeometric_pfq_base<T>::C.resize(1u, A1);

        std::int32_t X1 = N2;

        T C1 = T(1) - CP;

        const T Z1 = T(4) / hypergeometric_pfq_base<T>::W;

        for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; ++k)
        {
          const T DIVFAC = T(1) / X1;

          --X1;

          // The terms have been slightly re-arranged resulting in lower complexity.
          // Parentheses have been added to avoid reliance on operator precedence.
          const T term =   (A2 - ((A3 * DIVFAC) * X1))
                         + ((A2 * X1) * ((1 + (C1 + X1)) * Z1))
                         + ((A1 * X1) * ((DIVFAC - (C1 * Z1)) + (X1 * Z1)));

          hypergeometric_pfq_base<T>::C.push_front(term);

          A3 = A2;
          A2 = A1;
          A1 = hypergeometric_pfq_base<T>::C.front();
        }

        hypergeometric_pfq_base<T>::C.front() /= static_cast<std::int32_t>(2);
      }

    private:
      const T CP;
    };

    template<typename T> class ccoef1_hypergeometric_1f0 : public hypergeometric_pfq_base<T>
    {
    public:
      ccoef1_hypergeometric_1f0(const T& a,
                                const T& z,
                                const T& w) : hypergeometric_pfq_base<T>(z, w),
                                              AP(a) { }

      virtual ~ccoef1_hypergeometric_1f0() { }

      virtual void ccoef() const
      {
        // See Luke 1977 page 67.
        const std::int32_t N1 = static_cast<std::int32_t>(N() + static_cast<std::int32_t>(1));
        const std::int32_t N2 = static_cast<std::int32_t>(N() + static_cast<std::int32_t>(2));

        // Luke: C     ---------- START COMPUTING COEFFICIENTS USING         ----------
        // Luke: C     ---------- BACKWARD RECURRENCE SCHEME                 ----------
        // Luke: C
        T A2(0);
        T A1(boost::math::tools::root_epsilon<T>());

        hypergeometric_pfq_base<T>::C.resize(1u, A1);

        std::int32_t X1 = N2;

        T V1 = T(1) - AP;

        // Here, we have corrected what appears to be an error in Luke's code.

        // Luke's original code listing has:
        //  AFAC = 2 + FOUR/W
        // But it appears as though the correct form is:
        //  AFAC = 2 - FOUR/W.

        const T AFAC = 2 - (T(4) / hypergeometric_pfq_base<T>::W);

        for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; ++k)
        {
          --X1;

          // The terms have been slightly re-arranged resulting in lower complexity.
          // Parentheses have been added to avoid reliance on operator precedence.
          const T term = -(((X1 * AFAC) * A1) + ((X1 + V1) * A2)) / (X1 - V1);

          hypergeometric_pfq_base<T>::C.push_front(term);

          A2 = A1;
          A1 = hypergeometric_pfq_base<T>::C.front();
        }

        hypergeometric_pfq_base<T>::C.front() /= static_cast<std::int32_t>(2);
      }

    private:
      const T AP;

      virtual std::int32_t N() const { return static_cast<std::int32_t>(util::digit_scale<T>() * 1600.0F); }
    };

    template<typename T> class ccoef3_hypergeometric_1f1 : public hypergeometric_pfq_base<T>
    {
    public:
      ccoef3_hypergeometric_1f1(const T& a,
                                const T& c,
                                const T& z,
                                const T& w) : hypergeometric_pfq_base<T>(z, w),
                                              AP(a),
                                              CP(c) { }

      virtual ~ccoef3_hypergeometric_1f1() { }

      virtual void ccoef() const
      {
        // See Luke 1977 page 74.
        const std::int32_t N1 = static_cast<std::int32_t>(this->N() + static_cast<std::int32_t>(1));
        const std::int32_t N2 = static_cast<std::int32_t>(this->N() + static_cast<std::int32_t>(2));

        // Luke: C     ---------- START COMPUTING COEFFICIENTS USING         ----------
        // Luke: C     ---------- BACKWARD RECURRENCE SCHEME                 ----------
        // Luke: C
        T A3(0);
        T A2(0);
        T A1(boost::math::tools::root_epsilon<T>());

        hypergeometric_pfq_base<T>::C.resize(1u, A1);

        std::int32_t X  = N1;
        std::int32_t X1 = N2;

        T XA  =  X + AP;
        T X3A = (X + 3) - AP;

        const T Z1 = T(4) / hypergeometric_pfq_base<T>::W;

        for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; ++k)
        {
          --X;
          --X1;
          --XA;
          --X3A;

          const T X3A_over_X2 = X3A / static_cast<std::int32_t>(X + 2);

          // The terms have been slightly re-arranged resulting in lower complexity.
          // Parentheses have been added to avoid reliance on operator precedence.
          const T PART1 =  A1 * (((X + CP) * Z1) - X3A_over_X2);
          const T PART2 =  A2 * (Z1 * ((X + 3) - CP) + (XA / X1));
          const T PART3 =  A3 * X3A_over_X2;

          const T term = (((PART1 + PART2) + PART3) * X1) / XA;

          hypergeometric_pfq_base<T>::C.push_front(term);

          A3 = A2;
          A2 = A1;
          A1 = hypergeometric_pfq_base<T>::C.front();
        }

        hypergeometric_pfq_base<T>::C.front() /= static_cast<std::int32_t>(2);
      }

    private:
      const T AP;
      const T CP;
    };

    template<typename T> class ccoef6_hypergeometric_1f2 : public hypergeometric_pfq_base<T>
    {
    public:
      ccoef6_hypergeometric_1f2(const T& a,
                                const T& b,
                                const T& c,
                                const T& z,
                                const T& w) : hypergeometric_pfq_base<T>(z, w),
                                              AP(a),
                                              BP(b),
                                              CP(c) { }

      virtual ~ccoef6_hypergeometric_1f2() { }

      virtual void ccoef() const
      {
        // See Luke 1977 page 85.
        const std::int32_t N1 = static_cast<std::int32_t>(this->N() + static_cast<std::int32_t>(1));

        // Luke: C     ---------- START COMPUTING COEFFICIENTS USING         ----------
        // Luke: C     ---------- BACKWARD RECURRENCE SCHEME                 ----------
        // Luke: C
        T A4(0);
        T A3(0);
        T A2(0);
        T A1(boost::math::tools::root_epsilon<T>());

        hypergeometric_pfq_base<T>::C.resize(1u, A1);

        std::int32_t X  = N1;
        T            PP = X + AP;

        const T Z1 = T(4) / hypergeometric_pfq_base<T>::W;

        for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; ++k)
        {
          --X;
          --PP;

          const std::int32_t TWO_X    = static_cast<std::int32_t>(X * 2);
          const std::int32_t X_PLUS_1 = static_cast<std::int32_t>(X + 1);
          const std::int32_t X_PLUS_3 = static_cast<std::int32_t>(X + 3);
          const std::int32_t X_PLUS_4 = static_cast<std::int32_t>(X + 4);

          const T QQ = T(TWO_X + 3) / static_cast<std::int32_t>(TWO_X + static_cast<std::int32_t>(5));
          const T SS = (X + BP) * (X + CP);

          // The terms have been slightly re-arranged resulting in lower complexity.
          // Parentheses have been added to avoid reliance on operator precedence.
          const T PART1 =   A1 * (((PP - (QQ * (PP + 1))) * 2) + (SS * Z1));
          const T PART2 =  (A2 * (X + 2)) * ((((TWO_X + 1) * PP) / X_PLUS_1) - ((QQ * 4) * (PP + 1)) + (((TWO_X + 3) * (PP + 2)) / X_PLUS_3) + ((Z1 * 2) * (SS - (QQ * (X_PLUS_1 + BP)) * (X_PLUS_1 + CP))));
          const T PART3 =   A3 * ((((X_PLUS_3 - AP) - (QQ * (X_PLUS_4 - AP))) * 2) + (((QQ * Z1) * (X_PLUS_4 - BP)) * (X_PLUS_4 - CP)));
          const T PART4 = ((A4 * QQ) * (X_PLUS_4 - AP)) / X_PLUS_3;

          const T term = (((PART1 - PART2) + (PART3 - PART4)) * X_PLUS_1) / PP;

          hypergeometric_pfq_base<T>::C.push_front(term);

          A4 = A3;
          A3 = A2;
          A2 = A1;
          A1 = hypergeometric_pfq_base<T>::C.front();
        }

        hypergeometric_pfq_base<T>::C.front() /= static_cast<std::int32_t>(2);
      }

    private:
      const T AP;
      const T BP;
      const T CP;
    };

    template<typename T> class ccoef2_hypergeometric_2f1 : public hypergeometric_pfq_base<T>
    {
    public:
      ccoef2_hypergeometric_2f1(const T& a,
                                const T& b,
                                const T& c,
                                const T& z,
                                const T& w) : hypergeometric_pfq_base<T>(z, w),
                                              AP(a),
                                              BP(b),
                                              CP(c) { }

      virtual ~ccoef2_hypergeometric_2f1() { }

      virtual void ccoef() const
      {
        // See Luke 1977 page 59.
        const std::int32_t N1 = static_cast<std::int32_t>(N() + static_cast<std::int32_t>(1));
        const std::int32_t N2 = static_cast<std::int32_t>(N() + static_cast<std::int32_t>(2));

        // Luke: C     ---------- START COMPUTING COEFFICIENTS USING         ----------
        // Luke: C     ---------- BACKWARD RECURRENCE SCHEME                 ----------
        // Luke: C
        T A3(0);
        T A2(0);
        T A1(boost::math::tools::root_epsilon<T>());

        hypergeometric_pfq_base<T>::C.resize(1u, A1);

        std::int32_t X  = N1;
        std::int32_t X1 = N2;
        std::int32_t X3 = static_cast<std::int32_t>((X * 2) + 3);

        T X3A = (X + 3) - AP;
        T X3B = (X + 3) - BP;

        const T Z1 = T(4) / hypergeometric_pfq_base<T>::W;

        for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; ++k)
        {
          --X;
          --X1;
          --X3A;
          --X3B;
          X3 -= 2;

          const std::int32_t X_PLUS_2 = static_cast<std::int32_t>(X + 2);

          const T XAB = T(1) / ((X + AP) * (X + BP));

          // The terms have been slightly re-arranged resulting in lower complexity.
          // Parentheses have been added to avoid reliance on operator precedence.
          const T PART1 = (A1 * X1) * (2 - (((AP + X1) * (BP + X1)) * ((T(X3) / X_PLUS_2) * XAB)) + ((CP + X) * (XAB * Z1)));
          const T PART2 = (A2 * XAB) * ((X3A * X3B) - (X3 * ((X3A + X3B) - 1)) + (((3 - CP) + X) * (X1 * Z1)));
          const T PART3 = (A3 * X1) * (X3A / X_PLUS_2) * (X3B * XAB);

          const T term = (PART1 + PART2) - PART3;

          hypergeometric_pfq_base<T>::C.push_front(term);

          A3 = A2;
          A2 = A1;
          A1 = hypergeometric_pfq_base<T>::C.front();
        }

        hypergeometric_pfq_base<T>::C.front() /= static_cast<std::int32_t>(2);
      }

    private:
      const T AP;
      const T BP;
      const T CP;

      virtual std::int32_t N() const { return static_cast<std::int32_t>(util::digit_scale<T>() * 1600.0F); }
    };

    template<class T> T luke_ccoef4_hypergeometric_0f1(const T& a, const T& x);
    template<class T> T luke_ccoef1_hypergeometric_1f0(const T& a, const T& x);
    template<class T> T luke_ccoef3_hypergeometric_1f1(const T& a, const T& b, const T& x);
    template<class T> T luke_ccoef6_hypergeometric_1f2(const T& a, const T& b, const T& c, const T& x);
    template<class T> T luke_ccoef2_hypergeometric_2f1(const T& a, const T& b, const T& c, const T& x);
  }
}

template<class T>
T examples::nr_006::luke_ccoef4_hypergeometric_0f1(const T& a, const T& x)
{
  const ccoef4_hypergeometric_0f1<T> hypergeometric_0f1_object(a, x, T(-20));

  hypergeometric_0f1_object.ccoef();

  return hypergeometric_0f1_object.series();
}

template<class T>
T examples::nr_006::luke_ccoef1_hypergeometric_1f0(const T& a, const T& x)
{
  const ccoef1_hypergeometric_1f0<T> hypergeometric_1f0_object(a, x, T(-20));

  hypergeometric_1f0_object.ccoef();

  return hypergeometric_1f0_object.series();
}

template<class T>
T examples::nr_006::luke_ccoef3_hypergeometric_1f1(const T& a, const T& b, const T& x)
{
  const ccoef3_hypergeometric_1f1<T> hypergeometric_1f1_object(a, b, x, T(-20));

  hypergeometric_1f1_object.ccoef();

  return hypergeometric_1f1_object.series();
}

template<class T>
T examples::nr_006::luke_ccoef6_hypergeometric_1f2(const T& a, const T& b, const T& c, const T& x)
{
  const ccoef6_hypergeometric_1f2<T> hypergeometric_1f2_object(a, b, c, x, T(-20));

  hypergeometric_1f2_object.ccoef();

  return hypergeometric_1f2_object.series();
}

template<class T>
T examples::nr_006::luke_ccoef2_hypergeometric_2f1(const T& a, const T& b, const T& c, const T& x)
{
  const ccoef2_hypergeometric_2f1<T> hypergeometric_2f1_object(a, b, c, x, T(-20));

  hypergeometric_2f1_object.ccoef();

  return hypergeometric_2f1_object.series();
}

int main()
{
  stopwatch<STD_CHRONO::high_resolution_clock> my_stopwatch;
  float total_time = 0.0F;

  std::vector<mp_type> hypergeometric_0f1_results(20U);
  std::vector<mp_type> hypergeometric_1f0_results(20U);
  std::vector<mp_type> hypergeometric_1f1_results(20U);
  std::vector<mp_type> hypergeometric_2f1_results(20U);
  std::vector<mp_type> hypergeometric_1f2_results(20U);

  const mp_type a(mp_type(3) / 7);
  const mp_type b(mp_type(2) / 3);
  const mp_type c(mp_type(1) / 4);

  std::int_least16_t i;

  std::cout << "test hypergeometric_0f1." << std::endl;
  i = 1U;
  my_stopwatch.reset();

  // Generate a table of values of Hypergeometric0F1.
  // Compare with the Mathematica command:
  // Table[N[HypergeometricPFQ[{}, {3/7}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
  std::for_each(hypergeometric_0f1_results.begin(),
                hypergeometric_0f1_results.end(),
                [&i, &a](mp_type& new_value)
                {
                  const mp_type x(-(boost::math::constants::euler<mp_type>() * i));

                  new_value = examples::nr_006::luke_ccoef4_hypergeometric_0f1(a, x);

                  ++i;
                });

  total_time += STD_CHRONO::duration_cast<STD_CHRONO::duration<float> >(my_stopwatch.elapsed()).count();

  // Print the values of Hypergeometric0F1.
  std::for_each(hypergeometric_0f1_results.begin(),
                hypergeometric_0f1_results.end(),
                [](const mp_type& h)
                {
                  std::cout << std::setprecision(DIGIT_COUNT) << h << std::endl;
                });

  std::cout << "test hypergeometric_1f0." << std::endl;
  i = 1U;
  my_stopwatch.reset();

  // Generate a table of values of Hypergeometric1F0.
  // Compare with the Mathematica command:
  // Table[N[HypergeometricPFQ[{3/7}, {}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
  std::for_each(hypergeometric_1f0_results.begin(),
                hypergeometric_1f0_results.end(),
                [&i, &a](mp_type& new_value)
                {
                  const mp_type x(-(boost::math::constants::euler<mp_type>() * i));

                  new_value = examples::nr_006::luke_ccoef1_hypergeometric_1f0(a, x);

                  ++i;
                });

  total_time += STD_CHRONO::duration_cast<STD_CHRONO::duration<float> >(my_stopwatch.elapsed()).count();

  // Print the values of Hypergeometric1F0.
  std::for_each(hypergeometric_1f0_results.begin(),
                hypergeometric_1f0_results.end(),
                [](const mp_type& h)
                {
                  std::cout << std::setprecision(DIGIT_COUNT) << h << std::endl;
                });

  std::cout << "test hypergeometric_1f1." << std::endl;
  i = 1U;
  my_stopwatch.reset();

  // Generate a table of values of Hypergeometric1F1.
  // Compare with the Mathematica command:
  // Table[N[HypergeometricPFQ[{3/7}, {2/3}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
  std::for_each(hypergeometric_1f1_results.begin(),
                hypergeometric_1f1_results.end(),
                [&i, &a, &b](mp_type& new_value)
                {
                  const mp_type x(-(boost::math::constants::euler<mp_type>() * i));

                  new_value = examples::nr_006::luke_ccoef3_hypergeometric_1f1(a, b, x);

                  ++i;
                });

  total_time += STD_CHRONO::duration_cast<STD_CHRONO::duration<float> >(my_stopwatch.elapsed()).count();

  // Print the values of Hypergeometric1F1.
  std::for_each(hypergeometric_1f1_results.begin(),
                hypergeometric_1f1_results.end(),
                [](const mp_type& h)
                {
                  std::cout << std::setprecision(DIGIT_COUNT) << h << std::endl;
                });

  std::cout << "test hypergeometric_1f2." << std::endl;
  i = 1U;
  my_stopwatch.reset();

  // Generate a table of values of Hypergeometric1F2.
  // Compare with the Mathematica command:
  // Table[N[HypergeometricPFQ[{3/7}, {2/3, 1/4}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
  std::for_each(hypergeometric_1f2_results.begin(),
                hypergeometric_1f2_results.end(),
                [&i, &a, &b, &c](mp_type& new_value)
                {
                  const mp_type x(-(boost::math::constants::euler<mp_type>() * i));

                  new_value = examples::nr_006::luke_ccoef6_hypergeometric_1f2(a, b, c, x);

                  ++i;
                });

  total_time += STD_CHRONO::duration_cast<STD_CHRONO::duration<float> >(my_stopwatch.elapsed()).count();

  // Print the values of Hypergeometric1F2.
  std::for_each(hypergeometric_1f2_results.begin(),
                hypergeometric_1f2_results.end(),
                [](const mp_type& h)
                {
                  std::cout << std::setprecision(DIGIT_COUNT) << h << std::endl;
                });

  std::cout << "test hypergeometric_2f1." << std::endl;
  i = 1U;
  my_stopwatch.reset();

  // Generate a table of values of Hypergeometric2F1.
  // Compare with the Mathematica command:
  // Table[N[HypergeometricPFQ[{3/7, 2/3}, {1/4}, -(i * EulerGamma)], 100], {i, 1, 20, 1}]
  std::for_each(hypergeometric_2f1_results.begin(),
                hypergeometric_2f1_results.end(),
                [&i, &a, &b, &c](mp_type& new_value)
                {
                  const mp_type x(-(boost::math::constants::euler<mp_type>() * i));

                  new_value = examples::nr_006::luke_ccoef2_hypergeometric_2f1(a, b, c, x);

                  ++i;
                });

  total_time += STD_CHRONO::duration_cast<STD_CHRONO::duration<float> >(my_stopwatch.elapsed()).count();

  // Print the values of Hypergeometric2F1.
  std::for_each(hypergeometric_2f1_results.begin(),
                hypergeometric_2f1_results.end(),
                [](const mp_type& h)
                {
                  std::cout << std::setprecision(DIGIT_COUNT) << h << std::endl;
                });

  std::cout << "Total execution time = " << std::setprecision(3) << total_time << "s" << std::endl;
}