File: literature.qbk

package info (click to toggle)
boost1.74 1.74.0-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 464,084 kB
  • sloc: cpp: 3,338,324; xml: 131,293; python: 33,088; ansic: 14,336; asm: 4,034; sh: 3,351; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (53 lines) | stat: -rw-r--r-- 2,364 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
[/============================================================================
  Boost.odeint

  Copyright 2010-2012 Karsten Ahnert
  Copyright 2010-2012 Mario Mulansky

  Use, modification and distribution is subject to the Boost Software License,
  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt)
=============================================================================/]


[section Literature]

[*General information about numerical integration of ordinary differential equations:]

[#numerical_recipies]
[1] Press William H et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007).

[#hairer_solving_odes_1]
[2] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed. (Springer, Berlin, 2009).

[#hairer_solving_odes_2]
[3] Ernst Hairer and Gerhard Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 2010).


[*Symplectic integration of numerical integration:]

[#hairer_geometrical_numeric_integration]
[4] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer-Verlag Gmbh, 2006).

[#leimkuhler_reich_simulating_hamiltonian_dynamics]
[5] Leimkuhler Benedict and Reich Sebastian, Simulating Hamiltonian Dynamics (Cambridge University Press, 2005).


[*Special symplectic methods:]

[#symplectic_yoshida_symplectic_integrators]
[6] Haruo Yoshida, “Construction of higher order symplectic integrators,” Physics Letters A 150, no. 5 (November 12, 1990): 262-268.

[#symplectic_mylachlan_symmetric_composition_mehtods]
[7] Robert I. McLachlan, “On the numerical integration of ordinary differential equations by symmetric composition methods,” SIAM J. Sci. Comput. 16, no. 1 (1995): 151-168.


[*Special systems:]

[#fpu_scholarpedia]
[8]  [@http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations]

[#synchronization_pikovsky_rosenblum]
[9] Arkady Pikovsky, Michael Rosemblum, and Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. (Cambridge University Press, 2001).

[endsect]