1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
<?xml version="1.0" encoding="utf-8"?>
<!--
Copyright 2012 Eric Niebler
Distributed under the Boost
Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-->
<header name="boost/proto/transform/call.hpp">
<para>Contains definition of the call<> transform. </para>
<namespace name="boost">
<namespace name="proto">
<struct name="call">
<template>
<template-type-parameter name="T"/>
</template>
<purpose>Make the given <conceptname>CallableTransform</conceptname> into a <conceptname>PrimitiveTransform</conceptname>.</purpose>
<description>
<para>
The purpose of <computeroutput>proto::call<></computeroutput> is to annotate a transform as callable
so that <computeroutput><classname alt="proto::when">proto::when<></classname></computeroutput> knows
how to apply it. The template parameter must be either a <conceptname>PrimitiveTransform</conceptname> or a
<conceptname>CallableTransform</conceptname>; that is, a function type for which the return type is a callable
<conceptname>PolymorphicFunctionObject</conceptname>.
</para>
<para>
For the complete description of the behavior of the <computeroutput>proto::call<></computeroutput>
transform, see the documentation for the nested
<computeroutput>
<classname alt="proto::call::impl">proto::call::impl<></classname>
</computeroutput>
class template.
</para>
</description>
<inherit><type><classname>proto::transform</classname>< call<T> ></type></inherit>
<struct name="impl">
<template>
<template-type-parameter name="Expr"/>
<template-type-parameter name="State"/>
<template-type-parameter name="Data"/>
</template>
<inherit><type><classname>proto::transform_impl</classname><Expr, State, Data></type></inherit>
<typedef name="result_type">
<type><replaceable>see-below</replaceable></type>
<description>
<para>
In the description that follows, a type <computeroutput>T</computeroutput> is determined to model the
<conceptname>PrimitiveTransform</conceptname> concept if
<computeroutput><classname>proto::is_transform</classname><T>::value</computeroutput> is
<computeroutput>true</computeroutput>.
</para>
<para>
<computeroutput><classname>proto::call</classname><T>::impl<Expr,State,Data>::result_type</computeroutput>
is computed as follows:
<itemizedlist>
<listitem>
<para>
If <computeroutput>T</computeroutput> if of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname></computeroutput> or
<computeroutput><conceptname>PrimitiveTransform</conceptname>()</computeroutput>, then
<computeroutput>result_type</computeroutput> is:
<programlisting>typename boost::result_of<PrimitiveTransform(Expr, State, Data)>::type</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>)</computeroutput>, then
<computeroutput>result_type</computeroutput> is:
<programlisting>typename boost::result_of<PrimitiveTransform(
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>(Expr, State, Data)>::type,
State,
Data
)>::type</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>, A<subscript>1</subscript>)</computeroutput>, then
<computeroutput>result_type</computeroutput> is:
<programlisting>typename boost::result_of<PrimitiveTransform(
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>(Expr, State, Data)>::type,
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>1</subscript>>(Expr, State, Data)>::type,
Data
)>::type</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>, A<subscript>1</subscript>, A<subscript>2</subscript>)</computeroutput>, then
<computeroutput>result_type</computeroutput> is:
<programlisting>typename boost::result_of<PrimitiveTransform(
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>(Expr, State, Data)>::type,
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>1</subscript>>(Expr, State, Data)>::type,
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>2</subscript>>(Expr, State, Data)>::type
)>::type</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n</subscript>)</computeroutput>, then
<computeroutput>result_type</computeroutput> is:
<programlisting>typename boost::result_of<PolymorphicFunctionObject(
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>(Expr, State, Data)>::type,
…
typename boost::result_of<<classname>when</classname><<classname>_</classname>,A<subscript>n</subscript>>(Expr, State, Data)>::type
>::type</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>, then
let <computeroutput>T'</computeroutput> be <computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n-1</subscript>, <replaceable>S</replaceable>)</computeroutput>,
where <replaceable>S</replaceable> is a type sequence computed from the unpacking expression <computeroutput>A<subscript>n</subscript></computeroutput>
as described in the reference for <computeroutput><classname>proto::pack</classname></computeroutput>.
Then, <computeroutput>result_type</computeroutput> is:
<programlisting><computeroutput>typename <classname>proto::call</classname><T'>::impl<Expr,State,Data>::result_type</computeroutput></programlisting>
</para>
</listitem>
</itemizedlist>
</para>
</description>
</typedef>
<method-group name="public member functions">
<method name="operator()" cv="const">
<type>result_type</type>
<parameter name="expr">
<paramtype>typename impl::expr_param</paramtype>
</parameter>
<parameter name="state">
<paramtype>typename impl::state_param</paramtype>
</parameter>
<parameter name="data">
<paramtype>typename impl::data_param</paramtype>
</parameter>
<description>
<para>
In the description that follows, a type <computeroutput>T</computeroutput> is determined to model the
<conceptname>PrimitiveTransform</conceptname> concept if
<computeroutput><classname>proto::is_transform</classname><T>::value</computeroutput> is
<computeroutput>true</computeroutput>.
</para>
<para>
<computeroutput><classname>proto::call</classname><T>::impl<Expr,State,Data>::operator()</computeroutput> behaves as follows:
<itemizedlist>
<listitem>
<para>
If <computeroutput>T</computeroutput> if of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname></computeroutput> or
<computeroutput><conceptname>PrimitiveTransform</conceptname>()</computeroutput>, then
return
<programlisting>PrimitiveTransform()(expr, state, data)</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>)</computeroutput>, then
return
<programlisting>PrimitiveTransform()(
<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>()(expr, state, data),
state,
sata
)</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>, A<subscript>1</subscript>)</computeroutput>, then
return:
<programlisting>PrimitiveTransform()(
<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>()(expr, state, data),
<classname>when</classname><<classname>_</classname>,A<subscript>1</subscript>>()(expr, state, data),
Data
)</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PrimitiveTransform</conceptname>(A<subscript>0</subscript>, A<subscript>1</subscript>, A<subscript>2</subscript>)</computeroutput>, then
return
<programlisting>PrimitiveTransform()(
<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>()(expr, state, data),
<classname>when</classname><<classname>_</classname>,A<subscript>1</subscript>>()(expr, state, data),
<classname>when</classname><<classname>_</classname>,A<subscript>2</subscript>>()(expr, state, data)
)</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n</subscript>)</computeroutput>, then
return:
<programlisting>PolymorphicFunctionObject()(
<classname>when</classname><<classname>_</classname>,A<subscript>0</subscript>>()(expr, state, data),
...
<classname>when</classname><<classname>_</classname>,A<subscript>n</subscript>>()(expr, state, data)
)</programlisting>
</para>
</listitem>
<listitem>
<para>
If <computeroutput>T</computeroutput> is of the form
<computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>, then
let <computeroutput>T'</computeroutput> be <computeroutput><conceptname>PolymorphicFunctionObject</conceptname>(A<subscript>0</subscript>,…A<subscript>n-1</subscript>, <replaceable>S</replaceable>)</computeroutput>,
where <replaceable>S</replaceable> is a type sequence computed from the unpacking expression <computeroutput>A<subscript>n</subscript></computeroutput>
as described in the reference for <computeroutput><classname>proto::pack</classname></computeroutput>.
Then, return:
<programlisting><computeroutput><classname>proto::call</classname><T'>()(expr, state, data)</computeroutput></programlisting>
</para>
</listitem>
</itemizedlist>
</para>
</description>
</method>
</method-group>
</struct>
</struct>
</namespace>
</namespace>
</header>
|