File: make.xml

package info (click to toggle)
boost1.74 1.74.0-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 464,084 kB
  • sloc: cpp: 3,338,324; xml: 131,293; python: 33,088; ansic: 14,336; asm: 4,034; sh: 3,351; makefile: 1,193; perl: 1,036; yacc: 478; php: 212; ruby: 102; lisp: 24; sql: 13; csh: 6
file content (362 lines) | stat: -rw-r--r-- 17,959 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
<?xml version="1.0" encoding="utf-8"?>
<!--
  Copyright 2012 Eric Niebler

  Distributed under the Boost
  Software License, Version 1.0. (See accompanying
  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  -->
<header name="boost/proto/transform/make.hpp">
  <para>
    Contains definition of the
    <computeroutput>
      <classname alt="boost::proto::make">proto::make&lt;&gt;</classname>
    </computeroutput>
    and
    <computeroutput>
      <classname alt="boost::proto::protect">proto::protect&lt;&gt;</classname>
    </computeroutput>
    transforms.
  </para>
  <namespace name="boost">
    <namespace name="proto">
      <struct name="noinvoke">
        <template>
          <template-type-parameter name="T"/>
        </template>
        <purpose>A type annotation in an <conceptname>ObjectTransform</conceptname> which instructs
          Proto not to look for a nested <computeroutput>::type</computeroutput> within
          <computeroutput>T</computeroutput> after type substitution.</purpose>
        <description>
          <para>
            <conceptname>ObjectTransform</conceptname>s are evaluated by
            <computeroutput><classname alt="proto::make">proto::make&lt;&gt;</classname></computeroutput>,
            which finds all nested transforms and replaces them with the result of their applications.
            If any substitutions are performed, the result is first assumed to be a metafunction to be applied;
            that is, Proto checks to see if the result has a nested <computeroutput>::type</computeroutput>
            typedef. If it does, that becomes the result. The purpose of <computeroutput>proto::noinvoke&lt;&gt;</computeroutput>
            is to prevent Proto from looking for a nested <computeroutput>::type</computeroutput> typedef
            in these situations.
          </para>
          <para>
            Example:
            <programlisting>struct Test
  : <classname>proto::when</classname>&lt;
        <classname>_</classname>
      , proto::noinvoke&lt;
            // This remove_pointer invocation is bloked by noinvoke
            boost::remove_pointer&lt;
                // This add_pointer invocation is *not* blocked by noinvoke
                boost::add_pointer&lt;<classname>_</classname>&gt;
            &gt;
        &gt;()
    &gt;
{};

void test_noinvoke()
{
    typedef <classname>proto::terminal</classname>&lt;int&gt;::type Int;
    
    BOOST_MPL_ASSERT((
        boost::is_same&lt;
            boost::result_of&lt;Test(Int)&gt;::type
          , boost::remove_pointer&lt;Int *&gt;
        &gt;
    ));
    
    Int i = {42};
    boost::remove_pointer&lt;Int *&gt; t = Test()(i);
}</programlisting>
          </para>
        </description>
      </struct>
      <struct name="protect">
        <template>
          <template-type-parameter name="PrimitiveTransform"/>
        </template>
        <inherit><classname>proto::transform</classname>&lt; protect&lt;PrimitiveTransform&gt; &gt;</inherit>
        <purpose>A <conceptname>PrimitiveTransform</conceptname> which prevents another
          <conceptname>PrimitiveTransform</conceptname> from being applied in an
          <conceptname>ObjectTransform</conceptname>.</purpose>
        <description>
          <para>
            When building higher order transforms with
            <computeroutput>
              <classname alt="proto::make">proto::make&lt;&gt;</classname>
            </computeroutput> or
            <computeroutput>
              <classname alt="proto::lazy">proto::lazy&lt;&gt;</classname>
            </computeroutput>,
            you sometimes would like to build types that are parameterized with Proto transforms. In such
            lambda-style transforms, Proto will unhelpfully find all nested transforms and apply them, even
            if you don't want them to be applied. Consider the following transform, which will replace the
            <computeroutput>proto::_</computeroutput> in
            <computeroutput>Bar&lt;proto::_&gt;()</computeroutput>
            with <computeroutput>proto::terminal&lt;int&gt;::type</computeroutput>:
          </para>
          <para>
            <programlisting>template&lt;typename T&gt;
struct Bar
{};

struct Foo :
  <classname>proto::when</classname>&lt;<classname>proto::_</classname>, Bar&lt;<classname>proto::_</classname>&gt;() &gt;
{};

<classname>proto::terminal</classname>&lt;int&gt;::type i = {0};

int main() {
  Foo()(i);
  std::cout &lt;&lt; typeid(Foo()(i)).name() &lt;&lt; std::endl;
}</programlisting>
          </para>
          <para>
            If you actually wanted to default-construct an object of type
            <computeroutput>Bar&lt;proto::_&gt;</computeroutput>, you would have to protect the
            <computeroutput>_</computeroutput> to prevent it from being applied. You can
            use <computeroutput>proto::protect&lt;&gt;</computeroutput> as follows:
          </para>
          <para>
            <programlisting>// OK: replace anything with Bar&lt;_&gt;()
struct Foo :
  <classname>proto::when</classname>&lt;<classname>proto::_</classname>, Bar&lt;<classname>proto::protect</classname>&lt;<classname>proto::_</classname>&gt; &gt;() &gt;
{};</programlisting>
          </para>
        </description>
        <struct name="impl">
          <template>
            <template-type-parameter name=""/>
            <template-type-parameter name=""/>
            <template-type-parameter name=""/>
          </template>
          <typedef name="result_type">
            <type>PrimitiveTransform</type>
          </typedef>
        </struct>
      </struct>

      <struct name="make">
        <template>
          <template-type-parameter name="T"/>
        </template>
        
        <inherit><classname>proto::transform</classname>&lt; make&lt;T&gt; &gt;</inherit>
        
        <purpose>A <conceptname>PrimitiveTransform</conceptname> that computes a type by evaluating
          any nested transforms and then constructs an object of that type. </purpose>
        
        <description>
          <para>
            The purpose of <computeroutput>proto::make&lt;&gt;</computeroutput> is to annotate a transform as
            an <conceptname>ObjectTransform</conceptname> so that
            <computeroutput><classname alt="proto::when">proto::when&lt;&gt;</classname></computeroutput> knows
            how to apply it.
          </para>

          <para>
            For the full description of the behavior of the
            <computeroutput><classname alt="proto::make">proto::make&lt;&gt;</classname></computeroutput>
            transform, see the documentation for the nested
            <computeroutput><classname alt="proto::make::impl">proto::make::impl&lt;&gt;</classname></computeroutput>
            class template.
          </para>
        </description>

        <struct name="impl">
          <template>
            <template-type-parameter name="Expr"/>
            <template-type-parameter name="State"/>
            <template-type-parameter name="Data"/>
          </template>
          <inherit><classname>proto::transform_impl</classname>&lt; Expr, State, Data &gt;</inherit>
          <typedef name="result_type">
            <type><emphasis>see-below</emphasis></type>
            <description>
              <para>
                <computeroutput><classname>proto::make</classname>&lt;T&gt;::impl&lt;Expr, State, Data&gt;::result_type</computeroutput> is
                computed as follows:
              </para>
              <para>
                If <computeroutput>T</computeroutput> is an <conceptname>ObjectTransform</conceptname> of the form
                <computeroutput>Object(A<subscript>0</subscript>,…A<subscript>n</subscript>)</computeroutput> or
                <computeroutput>Object(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>,
                then let <computeroutput>O</computeroutput> be the return type
                <computeroutput>Object</computeroutput>. Otherwise, let <computeroutput>O</computeroutput>
                be <computeroutput>T</computeroutput>. The <computeroutput>result_type</computeroutput> typedef is
                then computed as follows:
              </para>
              <para>
                <itemizedlist>
                  <listitem>
                    <para>
                      If <computeroutput><classname>proto::is_transform</classname>&lt;O&gt;::value</computeroutput> is
                      <computeroutput>true</computeroutput>, then let the result type be
                      <computeroutput>
                        boost::result_of&lt;<classname>proto::when</classname>&lt;<classname>_</classname>, O&gt;(Expr, State, Data)&gt;::type
                      </computeroutput>.
                      Note that a substitution took place.
                    </para>
                  </listitem>
                  <listitem>
                    If <computeroutput>O</computeroutput> is a template like
                    <computeroutput><classname>proto::noinvoke</classname>&lt;S&lt;X<subscript>0</subscript>,…X<subscript>n</subscript>&gt; &gt;</computeroutput>,
                    then the result type is calculated as follows:
                    <itemizedlist>
                      <listitem>
                        <para>
                          For each <computeroutput>i</computeroutput> in
                          <computeroutput>[0,n]</computeroutput>, let <computeroutput>
                            X<subscript>i</subscript>'
                          </computeroutput> be
                          <computeroutput>
                            boost::result_of&lt;<classname>proto::make</classname>&lt;X<subscript>i</subscript>&gt;(Expr, State, Data)&gt;::type
                          </computeroutput>
                          (which evaluates this procedure recursively). Note that a substitution took place. (In this case,
                          Proto merely assumes that a substitution took place for the sake of compile-time efficiency. There
                          would be no reason to use <computeroutput><classname>proto::noinvoke&lt;&gt;</classname></computeroutput>
                          otherwise.)
                        </para>
                      </listitem>
                      <listitem>
                        <para>
                          The result type is
                          <computeroutput>
                            S&lt;X<subscript>0</subscript>',…X<subscript>n</subscript>'&gt;
                          </computeroutput>.
                        </para>
                      </listitem>
                    </itemizedlist>
                  </listitem>
                  <listitem>
                    If <computeroutput>O</computeroutput> is a template like
                    <computeroutput>S&lt;X<subscript>0</subscript>,…X<subscript>n</subscript>&gt;</computeroutput>,
                    then the result type is calculated as follows:
                    <itemizedlist>
                      <listitem>
                        <para>
                          For each <computeroutput>i</computeroutput> in
                          <computeroutput>[0,n]</computeroutput>, let <computeroutput>
                            X<subscript>i</subscript>'
                          </computeroutput> be
                          <computeroutput>
                            boost::result_of&lt;<classname>proto::make</classname>&lt;X<subscript>i</subscript>&gt;(Expr, State, Data)&gt;::type
                          </computeroutput>
                          (which evaluates this procedure recursively). Note whether any substitutions took place during
                          this operation.
                        </para>
                      </listitem>
                      <listitem>
                        <para>
                          If any substitutions took place in the above step and
                          <computeroutput>
                            S&lt;X<subscript>0</subscript>',…X<subscript>n</subscript>'&gt;
                          </computeroutput> has a nested
                          <computeroutput>type</computeroutput> typedef, the result type is
                          <computeroutput>
                            S&lt;X<subscript>0</subscript>',…X<subscript>n</subscript>'&gt;::type
                          </computeroutput>.
                        </para>
                      </listitem>
                      <listitem>
                        <para>
                          Otherwise, the result type is
                          <computeroutput>
                            S&lt;X<subscript>0</subscript>',…X<subscript>n</subscript>'&gt;
                          </computeroutput>.
                        </para>
                      </listitem>
                    </itemizedlist>
                  </listitem>
                  <listitem>
                    Otherwise, the result type is <computeroutput>O</computeroutput>, and note that no
                    substitution took place.
                  </listitem>
                </itemizedlist>
              </para>
              <para>
                Note that <computeroutput><classname alt="proto::when">proto::when&lt;&gt;</classname></computeroutput> is implemented
                in terms of <computeroutput><classname alt="proto::call">proto::call&lt;&gt;</classname></computeroutput>
                and <computeroutput><classname alt="proto::make">proto::make&lt;&gt;</classname></computeroutput>, so the
                above procedure is evaluated recursively.
              </para>
            </description>
          </typedef>
          <method-group name="public member functions">
            <method name="operator()" cv="const">
              <type>result_type</type>
              <parameter name="expr">
                <paramtype>typename impl::expr_param</paramtype>
              </parameter>
              <parameter name="state">
                <paramtype>typename impl::state_param</paramtype>
              </parameter>
              <parameter name="data">
                <paramtype>typename impl::data_param</paramtype>
              </parameter>
              <description>
                <para>
                  <computeroutput>
                    <classname>proto::make</classname>&lt;T&gt;::impl&lt;Expr,State,Data&gt;::operator()
                  </computeroutput>
                  behaves as follows:
                </para>
                <para>
                  <itemizedlist>
                    <listitem>
                      <para>
                        If <computeroutput>T</computeroutput> is of the form
                        <computeroutput>O(A<subscript>0</subscript>,…A<subscript>n</subscript>)</computeroutput>, then:
                      </para>
                      <itemizedlist>
                        <listitem>
                          <para>
                            If <computeroutput>
                              <classname>proto::is_aggregate</classname>&lt;result_type&gt;::value
                            </computeroutput> is <computeroutput>true</computeroutput>, then construct
                            and return an object <computeroutput>that</computeroutput> as follows:
                            <programlisting>result_type that = {
  <classname>proto::when</classname>&lt;<classname>_</classname>, A<subscript>0</subscript>&gt;()(expr, state, data),
  <classname>proto::when</classname>&lt;<classname>_</classname>, A<subscript>n</subscript>&gt;()(expr, state, data)
};</programlisting>
                          </para>
                        </listitem>
                        <listitem>
                          <para>
                            Otherwise, construct
                            and return an object <computeroutput>that</computeroutput> as follows:
                            <programlisting>result_type that(
  <classname>proto::when</classname>&lt;<classname>_</classname>, A<subscript>0</subscript>&gt;()(expr, state, data),
  <classname>proto::when</classname>&lt;<classname>_</classname>, A<subscript>n</subscript>&gt;()(expr, state, data)
);</programlisting>
                          </para>
                        </listitem>
                      </itemizedlist>
                    </listitem>
                    <listitem>
                      <para>
                        If <computeroutput>T</computeroutput> is of the form
                        <computeroutput>O(A<subscript>0</subscript>,…A<subscript>n</subscript> ...)</computeroutput>,
                        then let <computeroutput>T&apos;</computeroutput> be <computeroutput>O(A<subscript>0</subscript>,…A<subscript>n-1</subscript>, <replaceable>S</replaceable>)</computeroutput>,
                        where <replaceable>S</replaceable> is a type sequence computed from the unpacking expression <computeroutput>A<subscript>n</subscript></computeroutput>
                        as described in the reference for <computeroutput><classname>proto::pack</classname></computeroutput>. Then, return:
                        <programlisting>proto::make&lt;T&apos;&gt;()(expr, state, data)</programlisting>
                      </para>
                    </listitem>
                    <listitem>
                      <para>
                        Otherwise, construct and return an object <computeroutput>that</computeroutput>
                        as follows: <programlisting>result_type that = result_type();</programlisting>
                      </para>
                    </listitem>
                  </itemizedlist>
                </para>
              </description>
            </method>
          </method-group>
        </struct>
      </struct>
    </namespace>
  </namespace>
</header>