1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
//[ Vec3
///////////////////////////////////////////////////////////////////////////////
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This is a simple example using proto::extends to extend a terminal type with
// additional behaviors, and using custom contexts and proto::eval for
// evaluating expressions. It is a port of the Vec3 example
// from PETE (http://www.codesourcery.com/pooma/download.html).
#include <iostream>
#include <functional>
#include <boost/assert.hpp>
#include <boost/mpl/int.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/proto_typeof.hpp>
#include <boost/proto/transform.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
using proto::_;
// Here is an evaluation context that indexes into a Vec3
// expression, and combines the result.
struct Vec3SubscriptCtx
: proto::callable_context< Vec3SubscriptCtx const >
{
typedef int result_type;
Vec3SubscriptCtx(int i)
: i_(i)
{}
// Index array terminals with our subscript. Everything
// else will be handled by the default evaluation context.
int operator ()(proto::tag::terminal, int const (&arr)[3]) const
{
return arr[this->i_];
}
int i_;
};
// Here is an evaluation context that counts the number
// of Vec3 terminals in an expression.
struct CountLeavesCtx
: proto::callable_context< CountLeavesCtx, proto::null_context >
{
CountLeavesCtx()
: count(0)
{}
typedef void result_type;
void operator ()(proto::tag::terminal, int const(&)[3])
{
++this->count;
}
int count;
};
struct iplus : std::plus<int>, proto::callable {};
// Here is a transform that does the same thing as the above context.
// It demonstrates the use of the std::plus<> function object
// with the fold transform. With minor modifications, this
// transform could be used to calculate the leaf count at compile
// time, rather than at runtime.
struct CountLeaves
: proto::or_<
// match a Vec3 terminal, return 1
proto::when<proto::terminal<int[3]>, mpl::int_<1>() >
// match a terminal, return int() (which is 0)
, proto::when<proto::terminal<_>, int() >
// fold everything else, using std::plus<> to add
// the leaf count of each child to the accumulated state.
, proto::otherwise< proto::fold<_, int(), iplus(CountLeaves, proto::_state) > >
>
{};
// Here is the Vec3 struct, which is a vector of 3 integers.
struct Vec3
: proto::extends<proto::terminal<int[3]>::type, Vec3>
{
explicit Vec3(int i=0, int j=0, int k=0)
{
(*this)[0] = i;
(*this)[1] = j;
(*this)[2] = k;
}
int &operator [](int i)
{
return proto::value(*this)[i];
}
int const &operator [](int i) const
{
return proto::value(*this)[i];
}
// Here we define a operator = for Vec3 terminals that
// takes a Vec3 expression.
template< typename Expr >
Vec3 &operator =(Expr const & expr)
{
typedef Vec3SubscriptCtx const CVec3SubscriptCtx;
(*this)[0] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(0));
(*this)[1] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(1));
(*this)[2] = proto::eval(proto::as_expr(expr), CVec3SubscriptCtx(2));
return *this;
}
// This copy-assign is needed because a template is never
// considered for copy assignment.
Vec3 &operator=(Vec3 const &that)
{
(*this)[0] = that[0];
(*this)[1] = that[1];
(*this)[2] = that[2];
return *this;
}
void print() const
{
std::cout << '{' << (*this)[0]
<< ", " << (*this)[1]
<< ", " << (*this)[2]
<< '}' << std::endl;
}
};
// The count_leaves() function uses the CountLeaves transform and
// to count the number of leaves in an expression.
template<typename Expr>
int count_leaves(Expr const &expr)
{
// Count the number of Vec3 terminals using the
// CountLeavesCtx evaluation context.
CountLeavesCtx ctx;
proto::eval(expr, ctx);
// This is another way to count the leaves using a transform.
int i = 0;
BOOST_ASSERT( CountLeaves()(expr, i, i) == ctx.count );
return ctx.count;
}
int main()
{
Vec3 a, b, c;
c = 4;
b[0] = -1;
b[1] = -2;
b[2] = -3;
a = b + c;
a.print();
Vec3 d;
BOOST_PROTO_AUTO(expr1, b + c);
d = expr1;
d.print();
int num = count_leaves(expr1);
std::cout << num << std::endl;
BOOST_PROTO_AUTO(expr2, b + 3 * c);
num = count_leaves(expr2);
std::cout << num << std::endl;
BOOST_PROTO_AUTO(expr3, b + c * d);
num = count_leaves(expr3);
std::cout << num << std::endl;
return 0;
}
//]
|