1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
// Boost Sort library tests for integer_sort and float_sort details.
// Copyright Steven Ross 2014. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/sort for library home page.
#include <boost/cstdint.hpp>
#include <boost/sort/spreadsort/detail/spreadsort_common.hpp>
#include <boost/sort/spreadsort/detail/integer_sort.hpp>
#include <boost/sort/spreadsort/detail/float_sort.hpp>
#include <boost/sort/spreadsort/detail/string_sort.hpp>
#include <boost/sort/spreadsort/float_sort.hpp>
// Include unit test framework
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/test_tools.hpp>
#include <vector>
#include <iostream>
using namespace std;
using namespace boost::sort::spreadsort;
using namespace boost::sort::spreadsort::detail;
namespace {
struct int_right_shift {
int operator()(const int x, const unsigned offset) const {
return x >> offset;
}
};
struct float_right_shift {
int operator()(const float x, const unsigned offset) const {
return float_mem_cast<float, int>(x) >> offset;
}
};
const int max_int_bits = sizeof(boost::uintmax_t) * 8;
const int max_size_bits = sizeof(size_t) * 8;
const boost::uintmax_t one = 1;
// spreadsort won't recurse for inputs smaller than min_count.
const int int_min_log_count =
(std::min)((int)int_log_finishing_count,
(int)int_log_mean_bin_size + int_log_min_split_count);
const int float_min_log_count =
(std::min)((int)float_log_finishing_count,
(int)float_log_mean_bin_size + float_log_min_split_count);
const unsigned absolute_min_count = (std::min)(1 << int_min_log_count,
1 << float_min_log_count);
// Verify that roughlog2 is floor(log base 2) + 1.
void roughlog2_test()
{
for (boost::uintmax_t i = 0; i < max_int_bits; ++i) {
BOOST_CHECK(detail::rough_log_2_size(one << i) == i + 1);
BOOST_CHECK(detail::rough_log_2_size((one << i) - 1) == i);
}
}
// Test the worst-case performance handling, and assure that is using the
// correct formula for the worst-case number of radix iterations.
template<unsigned log_mean_bin_size, unsigned log_min_split_count,
unsigned log_finishing_count>
void get_min_count_test()
{
const unsigned min_log_size = log_mean_bin_size + log_min_split_count;
size_t prev_min_count = absolute_min_count;
for (int log_range = 0; log_range <= max_int_bits; ++log_range) {
size_t min_count = get_min_count<log_mean_bin_size, log_min_split_count,
log_finishing_count>(log_range);
BOOST_CHECK(min_count >= prev_min_count);
prev_min_count = min_count;
// When the range is really small, the radix sort will complete in one
// iteration and worst-case handling doesn't apply. The code below
// guarantees the worst-case number of radix sorting iteration.
if (log_range > min_log_size) {
BOOST_CHECK(min_count >= (1 << min_log_size));
int iterations = rough_log_2_size(min_count) - min_log_size;
BOOST_CHECK(iterations >= 1);
int base_iterations = max_splits - log_min_split_count;
int covered_log_range = 0;
if (iterations > base_iterations) {
covered_log_range += max_splits * (iterations - base_iterations);
} else {
base_iterations = iterations;
}
// sum of n to n + x = ((x + 1) * (n + (n + x)))/2 + log_mean_bin_size
covered_log_range +=
(base_iterations * (log_min_split_count * 2 + base_iterations - 1))/2 +
log_mean_bin_size;
BOOST_CHECK(covered_log_range >= log_range);
BOOST_CHECK(covered_log_range - max_splits < log_range);
}
}
}
// Test the decision of how many pieces to split up the radix sort into
// (roughly 2^(log_range - log_divisor)) to make sure the results are logical.
void get_log_divisor_test()
{
for (int log_range = 0; log_range <= max_int_bits; ++log_range) {
int prev_log_divisor = max_int_bits +
(std::max)((int)int_log_mean_bin_size, (int)float_log_mean_bin_size);
for (int log_count = 0; log_count < max_size_bits; ++log_count) {
size_t count = (one << log_count) - 1;
BOOST_CHECK(rough_log_2_size(count) == (unsigned)log_count);
int log_divisor =
get_log_divisor<int_log_mean_bin_size>(count, log_range);
// Only process counts >= int_log_finishing_count in this function.
if (count >= absolute_min_count)
BOOST_CHECK(log_divisor <= log_range);
// More pieces should be used the larger count is.
BOOST_CHECK(log_divisor <= prev_log_divisor);
prev_log_divisor = log_divisor;
BOOST_CHECK(log_divisor >= 0);
if (log_range > log_count) {
BOOST_CHECK(log_range - log_divisor <= max_splits);
} else if (log_range <= max_finishing_splits) {
BOOST_CHECK(log_divisor == 0);
}
}
}
}
// Verify that is_sorted_or_find_extremes returns true if the data is sorted,
// and otherwise returns the actual min and max.
void is_sorted_or_find_extremes_test()
{
vector<int> input;
input.push_back(3);
input.push_back(5);
input.push_back(1);
// Test a sorted input.
vector<int> sorted_input(input);
std::sort(sorted_input.begin(), sorted_input.end());
vector<int>::iterator max, min;
BOOST_CHECK(detail::is_sorted_or_find_extremes(sorted_input.begin(),
sorted_input.end(), max, min));
// Test an unsorted input.
BOOST_CHECK(!detail::is_sorted_or_find_extremes(input.begin(), input.end(),
max, min));
BOOST_CHECK(*min == 1);
BOOST_CHECK(*max == 5);
// Test the comparison function version.
BOOST_CHECK(detail::is_sorted_or_find_extremes(sorted_input.begin(),
sorted_input.end(), max, min,
std::less<int>()));
BOOST_CHECK(!detail::is_sorted_or_find_extremes(sorted_input.begin(),
sorted_input.end(),
max, min,
std::greater<int>()));
BOOST_CHECK(*min == 5);
BOOST_CHECK(*max == 1);
// Test with floats
vector<float> float_input;
float_input.push_back(.3f);
float_input.push_back(4.0f);
float_input.push_back(.1f);
vector<float> sorted_float_input(float_input);
std::sort(sorted_float_input.begin(), sorted_float_input.end());
// Test cast_float_iter
int cast_min = detail::cast_float_iter<int, vector<float>::iterator>(
sorted_float_input.begin());
int cast_max = detail::cast_float_iter<int, vector<float>::iterator>(
sorted_float_input.end() - 1);
BOOST_CHECK(cast_min == float_right_shift()(.1f, 0));
BOOST_CHECK(cast_max == float_right_shift()(4.0f, 0));
// Test a sorted input
int div_max, div_min;
BOOST_CHECK(detail::is_sorted_or_find_extremes(sorted_float_input.begin(),
sorted_float_input.end(),
div_max, div_min));
// Test an unsorted input.
BOOST_CHECK(!detail::is_sorted_or_find_extremes(float_input.begin(),
float_input.end(),
div_max, div_min));
BOOST_CHECK(div_min == cast_min);
BOOST_CHECK(div_max == cast_max);
// Test with a right_shift functor.
BOOST_CHECK(detail::is_sorted_or_find_extremes(sorted_float_input.begin(),
sorted_float_input.end(),
div_max, div_min,
float_right_shift()));
// Test an unsorted input.
BOOST_CHECK(!detail::is_sorted_or_find_extremes(float_input.begin(),
float_input.end(), div_max,
div_min,
float_right_shift()));
BOOST_CHECK(div_min == float_right_shift()(.1f, 0));
BOOST_CHECK(div_max == float_right_shift()(4.0f, 0));
}
// Make sure bins are created correctly.
void size_bins_test() {
size_t bin_sizes[1 << detail::max_finishing_splits];
bin_sizes[0] = 1;
bin_sizes[2] = 7;
const int old_bin_value = 7;
std::vector<int> old_bins;
old_bins.push_back(old_bin_value);
std::vector<vector<int>::iterator> bin_cache;
bin_cache.push_back(old_bins.begin());
unsigned cache_offset = 1;
unsigned cache_end;
const unsigned bin_count = 2;
std::vector<int>::iterator *new_cache_start =
size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
BOOST_CHECK((new_cache_start - &bin_cache[0]) == cache_offset);
BOOST_CHECK(bin_sizes[0] == 0);
BOOST_CHECK(bin_sizes[1] == 0);
BOOST_CHECK(bin_sizes[2] == 7); // shouldn't modify past bin_count
BOOST_CHECK(cache_end == 3);
BOOST_CHECK(bin_cache.size() == cache_end);
BOOST_CHECK(old_bins[0] == old_bin_value);
}
// Test the specialized 3-way swap loops.
void swap_loop_test() {
size_t bin_sizes[1 << detail::max_finishing_splits];
bin_sizes[0] = bin_sizes[1] = 2;
bin_sizes[2] = 1;
// test integer swap loop
vector<int> ints;
const int int_div_min = 3;
const int int_log_divisor = 1;
const unsigned int_offset = int_div_min << int_log_divisor;
ints.push_back(2 + int_offset);
ints.push_back(1 + int_offset); // stays in place
ints.push_back(4 + int_offset);
ints.push_back(3 + int_offset);
ints.push_back(0 + int_offset);
vector<vector<int>::iterator> int_bin_vector;
int_bin_vector.push_back(ints.begin());
int_bin_vector.push_back(int_bin_vector[0] + bin_sizes[0]);
int_bin_vector.push_back(int_bin_vector[1] + bin_sizes[1]);
vector<int>::iterator next_int_bin_start = int_bin_vector[0];
vector<int>::iterator *int_bins = &int_bin_vector[0];
int_right_shift integer_right_shift;
swap_loop(int_bins, next_int_bin_start, 0, integer_right_shift, bin_sizes,
int_log_divisor, int_div_min);
for (unsigned i = 0; i < ints.size(); ++i) {
BOOST_CHECK(ints[i] == int(int_offset + i));
}
BOOST_CHECK(next_int_bin_start == ints.begin() + bin_sizes[0]);
// test float swap loop
vector<float> floats;
const int float_four_as_int = float_mem_cast<float, int>(4.0f);
const int float_log_divisor =
rough_log_2_size(float_mem_cast<float, int>(5.0f) - float_four_as_int);
const int float_div_min = float_four_as_int >> float_log_divisor;
floats.push_back(6.0f);
floats.push_back(5.0f); // stays in place
floats.push_back(8.0f);
floats.push_back(7.0f);
floats.push_back(4.0f);
vector<vector<float>::iterator> float_bin_vector;
float_bin_vector.push_back(floats.begin());
float_bin_vector.push_back(float_bin_vector[0] + bin_sizes[0]);
float_bin_vector.push_back(float_bin_vector[1] + bin_sizes[1]);
vector<float>::iterator next_float_bin_start = float_bin_vector[0];
vector<float>::iterator *float_bins = &float_bin_vector[0];
float_swap_loop(float_bins, next_float_bin_start, 0, bin_sizes,
float_log_divisor, float_div_min);
for (unsigned i = 0; i < floats.size(); ++i) {
BOOST_CHECK(floats[i] == 4.0f + i);
}
BOOST_CHECK(next_float_bin_start == floats.begin() + bin_sizes[0]);
}
} // end anonymous namespace
// test main
int test_main( int, char*[] )
{
roughlog2_test();
get_min_count_test<int_log_mean_bin_size, int_log_min_split_count,
int_log_finishing_count>();
get_min_count_test<float_log_mean_bin_size, float_log_min_split_count,
float_log_finishing_count>();
get_log_divisor_test();
is_sorted_or_find_extremes_test();
size_bins_test();
swap_loop_test();
return 0;
}
|