File: bipartite_test.cpp

package info (click to toggle)
boost1.83 1.83.0-4.2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 545,456 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (213 lines) | stat: -rw-r--r-- 6,798 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/**
 *
 * Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net)
 *
 * Authors: Matthias Walter
 *
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 */

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/core/lightweight_test.hpp>
#include <boost/graph/bipartite.hpp>

/// Verifies a 2-coloring

template < typename Graph, typename ColorMap >
void check_two_coloring(const Graph& g, const ColorMap color_map)
{
    typedef boost::graph_traits< Graph > traits;
    typename traits::edge_iterator edge_iter, edge_end;

    for (boost::tie(edge_iter, edge_end) = boost::edges(g);
         edge_iter != edge_end; ++edge_iter)
    {
        typename traits::vertex_descriptor source, target;
        source = boost::source(*edge_iter, g);
        target = boost::target(*edge_iter, g);
        BOOST_TEST(
            boost::get(color_map, source) != boost::get(color_map, target));
    }
}

/// Tests for a vertex sequence to define an odd cycle

template < typename Graph, typename RandomAccessIterator >
void check_odd_cycle(
    const Graph& g, RandomAccessIterator first, RandomAccessIterator beyond)
{
    typedef boost::graph_traits< Graph > traits;

    typename traits::vertex_descriptor first_vertex, current_vertex,
        last_vertex;

    BOOST_TEST((beyond - first) % 2 == 1);

    //  std::cout << "odd_cycle: " << int(*first) << std::endl;

    for (first_vertex = current_vertex = *first++; first != beyond; ++first)
    {
        //    std::cout << "odd_cycle: " << int(*first) << std::endl;

        last_vertex = current_vertex;
        current_vertex = *first;

        BOOST_TEST(
            boost::lookup_edge(current_vertex, last_vertex, g).second);
    }

    BOOST_TEST(boost::lookup_edge(first_vertex, current_vertex, g).second);
}

/// Call the is_bipartite and find_odd_cycle functions and verify their results.

template < typename Graph, typename IndexMap >
void check_bipartite(const Graph& g, IndexMap index_map, bool is_bipartite)
{
    typedef boost::graph_traits< Graph > traits;
    typedef std::vector< boost::default_color_type > partition_t;
    typedef std::vector< typename traits::vertex_descriptor > vertex_vector_t;
    typedef boost::iterator_property_map< partition_t::iterator, IndexMap >
        partition_map_t;

    partition_t partition(boost::num_vertices(g));
    partition_map_t partition_map(partition.begin(), index_map);

    vertex_vector_t odd_cycle(boost::num_vertices(g));

    bool first_result = boost::is_bipartite(g, index_map, partition_map);

    BOOST_TEST(first_result == boost::is_bipartite(g, index_map));

    if (first_result)
        check_two_coloring(g, partition_map);

    BOOST_TEST(first_result == is_bipartite);

    typename vertex_vector_t::iterator second_first = odd_cycle.begin();
    typename vertex_vector_t::iterator second_beyond
        = boost::find_odd_cycle(g, index_map, partition_map, second_first);

    if (is_bipartite)
    {
        BOOST_TEST(second_beyond == second_first);
        check_two_coloring(g, partition_map);
    }
    else
    {
        check_odd_cycle(g, second_first, second_beyond);
    }

    second_beyond = boost::find_odd_cycle(g, index_map, second_first);
    if (is_bipartite)
    {
        BOOST_TEST(second_beyond == second_first);
    }
    else
    {
        check_odd_cycle(g, second_first, second_beyond);
    }
}

int main(int argc, char** argv)
{
    typedef boost::adjacency_list< boost::vecS, boost::vecS,
        boost::undirectedS >
        vector_graph_t;
    typedef boost::adjacency_list< boost::listS, boost::listS,
        boost::undirectedS >
        list_graph_t;
    typedef std::pair< int, int > E;

    typedef std::map< boost::graph_traits< list_graph_t >::vertex_descriptor,
        size_t >
        index_map_t;
    typedef boost::associative_property_map< index_map_t > index_property_map_t;

    /**
     * Create the graph drawn below.
     *
     *       0 - 1 - 2
     *       |       |
     *   3 - 4 - 5 - 6
     *  /      \   /
     *  |        7
     *  |        |
     *  8 - 9 - 10
     **/

    E bipartite_edges[]
        = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 4), E(3, 8), E(4, 5),
              E(4, 7), E(5, 6), E(6, 7), E(7, 10), E(8, 9), E(9, 10) };
    vector_graph_t bipartite_vector_graph(&bipartite_edges[0],
        &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11);
    list_graph_t bipartite_list_graph(&bipartite_edges[0],
        &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11);

    /**
     * Create the graph drawn below.
     *
     *       2 - 1 - 0
     *       |       |
     *   3 - 6 - 5 - 4
     *  /      \   /
     *  |        7
     *  |       /
     *  8 ---- 9
     *
     **/

    E non_bipartite_edges[] = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 4),
        E(3, 8), E(4, 5), E(4, 7), E(5, 6), E(6, 7), E(7, 9), E(8, 9) };
    vector_graph_t non_bipartite_vector_graph(&non_bipartite_edges[0],
        &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10);
    list_graph_t non_bipartite_list_graph(&non_bipartite_edges[0],
        &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10);

    /// Create index maps

    index_map_t bipartite_index_map, non_bipartite_index_map;
    boost::graph_traits< list_graph_t >::vertex_iterator vertex_iter,
        vertex_end;
    size_t i = 0;
    for (boost::tie(vertex_iter, vertex_end)
         = boost::vertices(bipartite_list_graph);
         vertex_iter != vertex_end; ++vertex_iter)
    {
        bipartite_index_map[*vertex_iter] = i++;
    }
    index_property_map_t bipartite_index_property_map
        = index_property_map_t(bipartite_index_map);

    i = 0;
    for (boost::tie(vertex_iter, vertex_end)
         = boost::vertices(non_bipartite_list_graph);
         vertex_iter != vertex_end; ++vertex_iter)
    {
        non_bipartite_index_map[*vertex_iter] = i++;
    }
    index_property_map_t non_bipartite_index_property_map
        = index_property_map_t(non_bipartite_index_map);

    /// Call real checks

    check_bipartite(bipartite_vector_graph,
        boost::get(boost::vertex_index, bipartite_vector_graph), true);
    check_bipartite(bipartite_list_graph, bipartite_index_property_map, true);

    check_bipartite(non_bipartite_vector_graph,
        boost::get(boost::vertex_index, non_bipartite_vector_graph), false);
    check_bipartite(
        non_bipartite_list_graph, non_bipartite_index_property_map, false);

    /// Test some more interfaces

    BOOST_TEST(is_bipartite(bipartite_vector_graph));
    BOOST_TEST(!is_bipartite(non_bipartite_vector_graph));

    return boost::report_errors();
}