File: bivariate_statistics_performance.cpp

package info (click to toggle)
boost1.83 1.83.0-4.2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 545,456 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (79 lines) | stat: -rw-r--r-- 2,807 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
//  (C) Copyright Matt Borland 2021.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <vector>
#include <boost/math/tools/random_vector.hpp>
#include <boost/math/statistics/bivariate_statistics.hpp>
#include <benchmark/benchmark.h>

using boost::math::generate_random_vector;

template<typename T>
void seq_covariance(benchmark::State& state)
{
    constexpr std::size_t seed {};
    const std::size_t size = state.range(0);
    std::vector<T> u = generate_random_vector<T>(size, seed);
    std::vector<T> v = generate_random_vector<T>(size, seed);

    for(auto _ : state)
    {
        benchmark::DoNotOptimize(boost::math::statistics::covariance(std::execution::seq, u, v));
    }
    state.SetComplexityN(state.range(0));
}

template<typename T>
void par_covariance(benchmark::State& state)
{
    constexpr std::size_t seed {};
    const std::size_t size = state.range(0);
    std::vector<T> u = generate_random_vector<T>(size, seed);
    std::vector<T> v = generate_random_vector<T>(size, seed);

    for(auto _ : state)
    {
        benchmark::DoNotOptimize(boost::math::statistics::covariance(std::execution::par, u, v));
    }
    state.SetComplexityN(state.range(0));
}

template<typename T>
void seq_correlation(benchmark::State& state)
{
    constexpr std::size_t seed {};
    const std::size_t size = state.range(0);
    std::vector<T> u = generate_random_vector<T>(size, seed);
    std::vector<T> v = generate_random_vector<T>(size, seed);

    for(auto _ : state)
    {
        benchmark::DoNotOptimize(boost::math::statistics::correlation_coefficient(std::execution::seq, u, v));
    }
    state.SetComplexityN(state.range(0));
}

template<typename T>
void par_correlation(benchmark::State& state)
{
    constexpr std::size_t seed {};
    const std::size_t size = state.range(0);
    std::vector<T> u = generate_random_vector<T>(size, seed);
    std::vector<T> v = generate_random_vector<T>(size, seed);

    for(auto _ : state)
    {
        benchmark::DoNotOptimize(boost::math::statistics::correlation_coefficient(std::execution::par, u, v));
    }
    state.SetComplexityN(state.range(0));
}

BENCHMARK_TEMPLATE(seq_covariance, double)->RangeMultiplier(2)->Range(1 << 6, 1 << 20)->Complexity(benchmark::oN)->UseRealTime();
BENCHMARK_TEMPLATE(par_covariance, double)->RangeMultiplier(2)->Range(1 << 6, 1 << 20)->Complexity(benchmark::oN)->UseRealTime();

BENCHMARK_TEMPLATE(seq_correlation, double)->RangeMultiplier(2)->Range(1 << 6, 1 << 20)->Complexity(benchmark::oN)->UseRealTime();
BENCHMARK_TEMPLATE(par_correlation, double)->RangeMultiplier(2)->Range(1 << 6, 1 << 20)->Complexity(benchmark::oN)->UseRealTime();

BENCHMARK_MAIN();