1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
//
// mutual_exclusion_1.cpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio.hpp>
#include <boost/asio/experimental/channel.hpp>
#include <iostream>
#include <memory>
using boost::asio::as_tuple;
using boost::asio::awaitable;
using boost::asio::dynamic_buffer;
using boost::asio::co_spawn;
using boost::asio::deferred;
using boost::asio::detached;
using boost::asio::experimental::channel;
using boost::asio::io_context;
using boost::asio::ip::tcp;
using boost::asio::steady_timer;
using namespace boost::asio::buffer_literals;
using namespace std::literals::chrono_literals;
// This class implements a simple line-based protocol:
//
// * For event line that is received from the client, the session sends a
// message header followed by the content of the line as the message body.
//
// * The session generates heartbeat messages once a second.
//
// This protocol is implemented using two actors, handle_messages() and
// send_heartbeats(), each written as a coroutine.
class line_based_echo_session :
public std::enable_shared_from_this<line_based_echo_session>
{
// The socket used to read from and write to the client. This socket is a
// data member as it is shared between the two actors.
tcp::socket socket_;
// As both of the actors will write to the socket, we need a lock to prevent
// these writes from overlapping. To achieve this, we use a channel with a
// buffer size of one. The lock is claimed by sending a message to the
// channel, and then released by receiving this message back again. If the
// lock is not held then the channel's buffer is empty, and the send will
// complete without delay. Otherwise, if the lock is held by the other actor,
// then the send operation will not complete until the lock is released.
channel<void()> write_lock_{socket_.get_executor(), 1};
public:
line_based_echo_session(tcp::socket socket)
: socket_{std::move(socket)}
{
socket_.set_option(tcp::no_delay(true));
}
void start()
{
co_spawn(socket_.get_executor(),
[self = shared_from_this()]{ return self->handle_messages(); },
detached);
co_spawn(socket_.get_executor(),
[self = shared_from_this()]{ return self->send_heartbeats(); },
detached);
}
private:
void stop()
{
socket_.close();
write_lock_.cancel();
}
awaitable<void> handle_messages()
{
try
{
constexpr std::size_t max_line_length = 1024;
std::string data;
for (;;)
{
// Read an entire line from the client.
std::size_t length = co_await async_read_until(socket_,
dynamic_buffer(data, max_line_length), '\n', deferred);
// Claim the write lock by sending a message to the channel. Since the
// channel signature is void(), there are no arguments to send in the
// message itself.
co_await write_lock_.async_send(deferred);
// Respond to the client with a message, echoing the line they sent.
co_await async_write(socket_, "<line>"_buf, deferred);
co_await async_write(socket_, dynamic_buffer(data, length), deferred);
// Release the lock by receiving the message back again.
write_lock_.try_receive([](auto...){});
}
}
catch (const std::exception&)
{
stop();
}
}
awaitable<void> send_heartbeats()
{
steady_timer timer{socket_.get_executor()};
try
{
for (;;)
{
// Wait one second before trying to send the next heartbeat.
timer.expires_after(1s);
co_await timer.async_wait(deferred);
// Claim the write lock by sending a message to the channel. Since the
// channel signature is void(), there are no arguments to send in the
// message itself.
co_await write_lock_.async_send(deferred);
// Send a heartbeat to the client. As the content of the heartbeat
// message never varies, a buffer literal can be used to specify the
// bytes of the message. The memory associated with a buffer literal is
// valid for the lifetime of the program, which mean that the buffer
// can be safely passed as-is to the asynchronous operation.
co_await async_write(socket_, "<heartbeat>\n"_buf, deferred);
// Release the lock by receiving the message back again.
write_lock_.try_receive([](auto...){});
}
}
catch (const std::exception&)
{
stop();
}
}
};
awaitable<void> listen(tcp::acceptor& acceptor)
{
for (;;)
{
auto [e, socket] = co_await acceptor.async_accept(as_tuple(deferred));
if (!e)
{
std::make_shared<line_based_echo_session>(std::move(socket))->start();
}
}
}
int main(int argc, char* argv[])
{
try
{
if (argc != 3)
{
std::cerr << "Usage: mutual_exclusion_1";
std::cerr << " <listen_address> <listen_port>\n";
return 1;
}
io_context ctx;
auto listen_endpoint =
*tcp::resolver(ctx).resolve(argv[1], argv[2],
tcp::resolver::passive).begin();
tcp::acceptor acceptor(ctx, listen_endpoint);
co_spawn(ctx, listen(acceptor), detached);
ctx.run();
}
catch (std::exception& e)
{
std::cerr << "Exception: " << e.what() << "\n";
}
}
|