1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
//
// composed_6.cpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/deferred.hpp>
#include <boost/asio/executor_work_guard.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/steady_timer.hpp>
#include <boost/asio/use_future.hpp>
#include <boost/asio/write.hpp>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
using boost::asio::ip::tcp;
// NOTE: This example requires the new boost::asio::async_initiate function. For
// an example that works with the Networking TS style of completion tokens,
// please see an older version of asio.
//------------------------------------------------------------------------------
// This composed operation shows composition of multiple underlying operations.
// It automatically serialises a message, using its I/O streams insertion
// operator, before sending it N times on the socket. To do this, it must
// allocate a buffer for the encoded message and ensure this buffer's validity
// until all underlying async_write operation complete. A one second delay is
// inserted prior to each write operation, using a steady_timer.
template <typename T,
boost::asio::completion_token_for<void(boost::system::error_code)> CompletionToken>
auto async_write_messages(tcp::socket& socket,
const T& message, std::size_t repeat_count,
CompletionToken&& token)
// The return type of the initiating function is deduced from the combination
// of:
//
// - the CompletionToken type,
// - the completion handler signature, and
// - the asynchronous operation's initiation function object.
//
// When the completion token is a simple callback, the return type is always
// void. In this example, when the completion token is boost::asio::yield_context
// (used for stackful coroutines) the return type would also be void, as
// there is no non-error argument to the completion handler. When the
// completion token is boost::asio::use_future it would be std::future<void>. When
// the completion token is boost::asio::deferred, the return type differs for each
// asynchronous operation.
//
// In C++20 we can omit the return type as it is automatically deduced from
// the return type of boost::asio::async_initiate.
{
// In addition to determining the mechanism by which an asynchronous
// operation delivers its result, a completion token also determines the time
// when the operation commences. For example, when the completion token is a
// simple callback the operation commences before the initiating function
// returns. However, if the completion token's delivery mechanism uses a
// future, we might instead want to defer initiation of the operation until
// the returned future object is waited upon.
//
// To enable this, when implementing an asynchronous operation we must
// package the initiation step as a function object. The initiation function
// object's call operator is passed the concrete completion handler produced
// by the completion token. This completion handler matches the asynchronous
// operation's completion handler signature, which in this example is:
//
// void(boost::system::error_code error)
//
// The initiation function object also receives any additional arguments
// required to start the operation. (Note: We could have instead passed these
// arguments in the lambda capture set. However, we should prefer to
// propagate them as function call arguments as this allows the completion
// token to optimise how they are passed. For example, a lazy future which
// defers initiation would need to make a decay-copy of the arguments, but
// when using a simple callback the arguments can be trivially forwarded
// straight through.)
auto initiation = [](
boost::asio::completion_handler_for<void(boost::system::error_code)>
auto&& completion_handler,
tcp::socket& socket,
std::unique_ptr<std::string> encoded_message,
std::size_t repeat_count,
std::unique_ptr<boost::asio::steady_timer> delay_timer)
{
// In this example, the composed operation's intermediate completion
// handler is implemented as a hand-crafted function object.
struct intermediate_completion_handler
{
// The intermediate completion handler holds a reference to the socket as
// it is used for multiple async_write operations, as well as for
// obtaining the I/O executor (see get_executor below).
tcp::socket& socket_;
// The allocated buffer for the encoded message. The std::unique_ptr
// smart pointer is move-only, and as a consequence our intermediate
// completion handler is also move-only.
std::unique_ptr<std::string> encoded_message_;
// The repeat count remaining.
std::size_t repeat_count_;
// A steady timer used for introducing a delay.
std::unique_ptr<boost::asio::steady_timer> delay_timer_;
// To manage the cycle between the multiple underlying asychronous
// operations, our intermediate completion handler is implemented as a
// state machine.
enum { starting, waiting, writing } state_;
// As our composed operation performs multiple underlying I/O operations,
// we should maintain a work object against the I/O executor. This tells
// the I/O executor that there is still more work to come in the future.
boost::asio::executor_work_guard<tcp::socket::executor_type> io_work_;
// The user-supplied completion handler, called once only on completion
// of the entire composed operation.
typename std::decay<decltype(completion_handler)>::type handler_;
// By having a default value for the second argument, this function call
// operator matches the completion signature of both the async_write and
// steady_timer::async_wait operations.
void operator()(const boost::system::error_code& error, std::size_t = 0)
{
if (!error)
{
switch (state_)
{
case starting:
case writing:
if (repeat_count_ > 0)
{
--repeat_count_;
state_ = waiting;
delay_timer_->expires_after(std::chrono::seconds(1));
delay_timer_->async_wait(std::move(*this));
return; // Composed operation not yet complete.
}
break; // Composed operation complete, continue below.
case waiting:
state_ = writing;
boost::asio::async_write(socket_,
boost::asio::buffer(*encoded_message_), std::move(*this));
return; // Composed operation not yet complete.
}
}
// This point is reached only on completion of the entire composed
// operation.
// We no longer have any future work coming for the I/O executor.
io_work_.reset();
// Deallocate the encoded message before calling the user-supplied
// completion handler.
encoded_message_.reset();
// Call the user-supplied handler with the result of the operation.
handler_(error);
}
// It is essential to the correctness of our composed operation that we
// preserve the executor of the user-supplied completion handler. With a
// hand-crafted function object we can do this by defining a nested type
// executor_type and member function get_executor. These obtain the
// completion handler's associated executor, and default to the I/O
// executor - in this case the executor of the socket - if the completion
// handler does not have its own.
using executor_type = boost::asio::associated_executor_t<
typename std::decay<decltype(completion_handler)>::type,
tcp::socket::executor_type>;
executor_type get_executor() const noexcept
{
return boost::asio::get_associated_executor(
handler_, socket_.get_executor());
}
// Although not necessary for correctness, we may also preserve the
// allocator of the user-supplied completion handler. This is achieved by
// defining a nested type allocator_type and member function
// get_allocator. These obtain the completion handler's associated
// allocator, and default to std::allocator<void> if the completion
// handler does not have its own.
using allocator_type = boost::asio::associated_allocator_t<
typename std::decay<decltype(completion_handler)>::type,
std::allocator<void>>;
allocator_type get_allocator() const noexcept
{
return boost::asio::get_associated_allocator(
handler_, std::allocator<void>{});
}
};
// Initiate the underlying async_write operation using our intermediate
// completion handler.
auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
boost::asio::async_write(socket, encoded_message_buffer,
intermediate_completion_handler{
socket, std::move(encoded_message),
repeat_count, std::move(delay_timer),
intermediate_completion_handler::starting,
boost::asio::make_work_guard(socket.get_executor()),
std::forward<decltype(completion_handler)>(completion_handler)});
};
// Encode the message and copy it into an allocated buffer. The buffer will
// be maintained for the lifetime of the composed asynchronous operation.
std::ostringstream os;
os << message;
std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
// Create a steady_timer to be used for the delay between messages.
std::unique_ptr<boost::asio::steady_timer> delay_timer(
new boost::asio::steady_timer(socket.get_executor()));
// The boost::asio::async_initiate function takes:
//
// - our initiation function object,
// - the completion token,
// - the completion handler signature, and
// - any additional arguments we need to initiate the operation.
//
// It then asks the completion token to create a completion handler (i.e. a
// callback) with the specified signature, and invoke the initiation function
// object with this completion handler as well as the additional arguments.
// The return value of async_initiate is the result of our operation's
// initiating function.
//
// Note that we wrap non-const reference arguments in std::reference_wrapper
// to prevent incorrect decay-copies of these objects.
return boost::asio::async_initiate<
CompletionToken, void(boost::system::error_code)>(
initiation, token, std::ref(socket),
std::move(encoded_message), repeat_count,
std::move(delay_timer));
}
//------------------------------------------------------------------------------
void test_callback()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using a lambda as a callback.
async_write_messages(socket, "Testing callback\r\n", 5,
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Messages sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_deferred()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the deferred completion token. This
// token causes the operation's initiating function to package up the
// operation with its arguments to return a function object, which may then be
// used to launch the asynchronous operation.
boost::asio::async_operation auto op = async_write_messages(
socket, "Testing deferred\r\n", 5, boost::asio::deferred);
// Launch the operation using a lambda as a callback.
std::move(op)(
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Messages sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_future()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the use_future completion token.
// This token causes the operation's initiating function to return a future,
// which may be used to synchronously wait for the result of the operation.
std::future<void> f = async_write_messages(
socket, "Testing future\r\n", 5, boost::asio::use_future);
io_context.run();
try
{
// Get the result of the operation.
f.get();
std::cout << "Messages sent\n";
}
catch (const std::exception& e)
{
std::cout << "Error: " << e.what() << "\n";
}
}
//------------------------------------------------------------------------------
int main()
{
test_callback();
test_deferred();
test_future();
}
|