1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// Copyright (c) 2020 Andrey Semashev
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This test is based on ordering.cpp by Helge Bahmann and Tim Blechmann.
// The test Was modified to use atomic_ref template instead of atomic.
// Attempt to determine whether the memory ordering/ fence operations
// work as expected:
// Let two threads race accessing multiple shared variables and
// verify that "observable" order of operations matches with the
// ordering constraints specified.
//
// We assume that "memory ordering violation" events are exponentially
// distributed, with unknown "average time between violations"
// (which is just the reciprocal of exp distribution parameter lambda).
// Use a "relaxed ordering" implementation that intentionally exhibits
// a (hopefully observable) such violation to compute the maximum-likelihood
// estimate for this time. From this, compute an estimate that covers the
// unknown value with 0.995 confidence (using chi square quantile).
//
// Use this estimate to pick a timeout for the race tests of the
// atomic implementations such that under the assumed distribution
// we get 0.995 probability to detect a race (if there is one).
//
// Overall this yields 0.995 * 0.995 > 0.99 confidence that the
// fences work as expected if this test program does not
// report an error.
#include <boost/memory_order.hpp>
#include <boost/atomic/atomic.hpp>
#include <boost/atomic/atomic_ref.hpp>
#include <cstddef>
#include <boost/bind/bind.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/lock_guard.hpp>
#include <boost/thread/lock_types.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/core/lightweight_test.hpp>
// Two threads perform the following operations:
//
// thread # 1 thread # 2
// store(a, 1) store(b, 1)
// x = read(b) y = read(a)
//
// Under relaxed memory ordering, the case (x, y) == (0, 0) is
// possible. Under sequential consistency, this case is impossible.
//
// This "problem" is reproducible on all platforms, even x86.
template<boost::memory_order store_order, boost::memory_order load_order>
class total_store_order_test
{
public:
total_store_order_test(void);
void run(boost::posix_time::time_duration & timeout);
bool detected_conflict(void) const { return detected_conflict_; }
private:
void thread1fn(void);
void thread2fn(void);
void check_conflict(void);
private:
int a_value_;
boost::atomic_ref<int> a_;
/* insert a bit of padding to push the two variables into
different cache lines and increase the likelihood of detecting
a conflict */
char pad1_[512];
int b_value_;
boost::atomic_ref<int> b_;
char pad2_[512];
boost::barrier barrier_;
int vrfyb1_, vrfya2_;
boost::atomic<bool> terminate_threads_;
boost::atomic<int> termination_consensus_;
bool detected_conflict_;
boost::mutex m_;
boost::condition_variable c_;
};
template<boost::memory_order store_order, boost::memory_order load_order>
total_store_order_test<store_order, load_order>::total_store_order_test(void) :
a_value_(0), a_(a_value_), b_value_(0), b_(b_value_), barrier_(2),
vrfyb1_(0), vrfya2_(0),
terminate_threads_(false), termination_consensus_(0),
detected_conflict_(false)
{
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::run(boost::posix_time::time_duration & timeout)
{
boost::system_time start = boost::get_system_time();
boost::system_time end = start + timeout;
boost::thread t1(boost::bind(&total_store_order_test::thread1fn, this));
boost::thread t2(boost::bind(&total_store_order_test::thread2fn, this));
{
boost::unique_lock< boost::mutex > guard(m_);
while (boost::get_system_time() < end && !detected_conflict_)
c_.timed_wait(guard, end);
}
terminate_threads_.store(true, boost::memory_order_relaxed);
t2.join();
t1.join();
boost::posix_time::time_duration duration = boost::get_system_time() - start;
if (duration < timeout)
timeout = duration;
}
volatile int backoff_dummy;
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::thread1fn(void)
{
while (true)
{
a_.store(1, store_order);
int b = b_.load(load_order);
barrier_.wait();
vrfyb1_ = b;
barrier_.wait();
check_conflict();
/* both threads synchronize via barriers, so either
both threads must exit here, or they must both do
another round, otherwise one of them will wait forever */
if (terminate_threads_.load(boost::memory_order_relaxed))
{
while (true)
{
int tmp = termination_consensus_.fetch_or(1, boost::memory_order_relaxed);
if (tmp == 3)
return;
if (tmp & 4)
break;
}
}
termination_consensus_.fetch_xor(4, boost::memory_order_relaxed);
unsigned int delay = rand() % 10000;
a_.store(0, boost::memory_order_relaxed);
barrier_.wait();
while (delay--)
backoff_dummy = delay;
}
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::thread2fn(void)
{
while (true)
{
b_.store(1, store_order);
int a = a_.load(load_order);
barrier_.wait();
vrfya2_ = a;
barrier_.wait();
check_conflict();
/* both threads synchronize via barriers, so either
both threads must exit here, or they must both do
another round, otherwise one of them will wait forever */
if (terminate_threads_.load(boost::memory_order_relaxed))
{
while (true)
{
int tmp = termination_consensus_.fetch_or(2, boost::memory_order_relaxed);
if (tmp == 3)
return;
if (tmp & 4)
break;
}
}
termination_consensus_.fetch_xor(4, boost::memory_order_relaxed);
unsigned int delay = rand() % 10000;
b_.store(0, boost::memory_order_relaxed);
barrier_.wait();
while (delay--)
backoff_dummy = delay;
}
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::check_conflict(void)
{
if (vrfyb1_ == 0 && vrfya2_ == 0)
{
boost::lock_guard< boost::mutex > guard(m_);
detected_conflict_ = true;
terminate_threads_.store(true, boost::memory_order_relaxed);
c_.notify_all();
}
}
void test_seq_cst(void)
{
double sum = 0.0;
/* take 10 samples */
for (std::size_t n = 0; n < 10; n++)
{
boost::posix_time::time_duration timeout(0, 0, 10);
total_store_order_test<boost::memory_order_relaxed, boost::memory_order_relaxed> test;
test.run(timeout);
if (!test.detected_conflict())
{
std::cout << "Failed to detect order=seq_cst violation while ith order=relaxed -- intrinsic ordering too strong for this test\n";
return;
}
std::cout << "seq_cst violation with order=relaxed after " << timeout.total_microseconds() << " us\n";
sum = sum + timeout.total_microseconds();
}
/* determine maximum likelihood estimate for average time between
race observations */
double avg_race_time_mle = (sum / 10);
/* pick 0.995 confidence (7.44 = chi square 0.995 confidence) */
double avg_race_time_995 = avg_race_time_mle * 2 * 10 / 7.44;
/* 5.298 = 0.995 quantile of exponential distribution */
boost::posix_time::time_duration timeout = boost::posix_time::microseconds((long)(5.298 * avg_race_time_995));
std::cout << "run seq_cst for " << timeout.total_microseconds() << " us\n";
total_store_order_test<boost::memory_order_seq_cst, boost::memory_order_seq_cst> test;
test.run(timeout);
BOOST_TEST(!test.detected_conflict()); // sequential consistency error
}
int main(int, char *[])
{
test_seq_cst();
return boost::report_errors();
}
|