1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
// Copyright 2003-2008 Jan Gaspar.
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
//[circular_buffer_bound_example_1
/*`
This example shows how the `circular_buffer` can be utilized
as an underlying container of the bounded buffer.
*/
#include <boost/circular_buffer.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/call_traits.hpp>
#include <boost/bind.hpp>
#include <boost/timer/timer.hpp> // for auto_cpu_timer
#include <iostream>
template <class T>
class bounded_buffer
{
public:
typedef boost::circular_buffer<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer(size_type capacity) : m_unread(0), m_container(capacity) {}
void push_front(typename boost::call_traits<value_type>::param_type item)
{ // `param_type` represents the "best" way to pass a parameter of type `value_type` to a method.
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_full, this));
m_container.push_front(item);
++m_unread;
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_empty, this));
*pItem = m_container[--m_unread];
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer(const bounded_buffer&); // Disabled copy constructor.
bounded_buffer& operator = (const bounded_buffer&); // Disabled assign operator.
bool is_not_empty() const { return m_unread > 0; }
bool is_not_full() const { return m_unread < m_container.capacity(); }
size_type m_unread;
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
}; //
//] [/circular_buffer_bound_example_1]
const unsigned long queue_size = 1000L;
const unsigned long total_elements = queue_size * 1000L;
//[circular_buffer_bound_example_2]
/*`To demonstrate, create two classes to exercise the buffer.
The producer class fills the buffer with elements.
The consumer class consumes the buffer contents.
*/
template<class Buffer>
class Producer
{
typedef typename Buffer::value_type value_type;
Buffer* m_container;
public:
Producer(Buffer* buffer) : m_container(buffer)
{}
void operator()()
{
for (unsigned long i = 0L; i < total_elements; ++i)
{
m_container->push_front(value_type());
}
}
};
template<class Buffer>
class Consumer
{
typedef typename Buffer::value_type value_type;
Buffer* m_container;
value_type m_item;
public:
Consumer(Buffer* buffer) : m_container(buffer)
{}
void operator()()
{
for (unsigned long i = 0L; i < total_elements; ++i)
{
m_container->pop_back(&m_item);
}
}
};
/*`Create a first-int first-out test of the bound_buffer.
Include a call to boost::progress_timer
[@http://www.boost.org/doc/libs/1_53_0/libs/timer/doc/cpu_timers.html CPU timer]
*/
template<class Buffer>
void fifo_test(Buffer* buffer)
{
// Start of timing.
boost::timer::auto_cpu_timer progress;
// Initialize the buffer with some values before launching producer and consumer threads.
for (unsigned long i = queue_size / 2L; i > 0; --i)
{
#if BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x581))
buffer->push_front(Buffer::value_type());
#else
buffer->push_front(BOOST_DEDUCED_TYPENAME Buffer::value_type());
#endif
}
// Construct the threads.
Consumer<Buffer> consumer(buffer);
Producer<Buffer> producer(buffer);
// Start the threads.
boost::thread consume(consumer);
boost::thread produce(producer);
// Wait for completion.
consume.join();
produce.join();
// End of timing.
// destructor of boost::timer::auto_cpu_timer will output the time to std::cout.
}
//] [/circular_buffer_bound_example_2]
int main()
{
//[circular_buffer_bound_example_3]
//`Construct a bounded_buffer to hold the chosen type, here int.
bounded_buffer<int> bb_int(queue_size);
std::cout << "Testing bounded_buffer<int> ";
//`Start the fifo test.
fifo_test(&bb_int);
//` destructor of boost::timer::auto_cpu_timer will output the time to std::cout
//] [/circular_buffer_bound_example_3]
return 0;
} // int main()
/*
//[circular_buffer_bound_output
Description: Autorun "J:\Cpp\Misc\Debug\circular_buffer_bound_example.exe"
Testing bounded_buffer<int> 15.010692s wall, 9.188459s user + 7.207246s system = 16.395705s CPU (109.2%)
//] [/circular_buffer_bound_output]
*/
|