1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/image/image2d.hpp>
#include <boost/compute/interop/opencv/core.hpp>
#include <boost/compute/interop/opencv/highgui.hpp>
#include <boost/compute/random/default_random_engine.hpp>
#include <boost/compute/random/uniform_real_distribution.hpp>
#include <boost/compute/utility/dim.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
using compute::dim;
using compute::int_;
using compute::float_;
using compute::float2_;
// the k-means example implements the k-means clustering algorithm
int main()
{
// number of clusters
size_t k = 6;
// number of points
size_t n_points = 4500;
// height and width of image
size_t height = 800;
size_t width = 800;
// get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
// generate random, uniformily-distributed points
compute::default_random_engine random_engine(queue);
compute::uniform_real_distribution<float_> uniform_distribution(0, 800);
compute::vector<float2_> points(n_points, context);
uniform_distribution.generate(
compute::make_buffer_iterator<float_>(points.get_buffer(), 0),
compute::make_buffer_iterator<float_>(points.get_buffer(), n_points * 2),
random_engine,
queue
);
// initialize all points to cluster 0
compute::vector<int_> clusters(n_points, context);
compute::fill(clusters.begin(), clusters.end(), 0, queue);
// create initial means with the first k points
compute::vector<float2_> means(k, context);
compute::copy_n(points.begin(), k, means.begin(), queue);
// k-means clustering program source
const char k_means_source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void assign_clusters(__global const float2 *points,
__global const float2 *means,
const int k,
__global int *clusters)
{
const uint gid = get_global_id(0);
const float2 point = points[gid];
// find the closest cluster
float current_distance = 0;
int closest_cluster = -1;
// find closest cluster mean to the point
for(int i = 0; i < k; i++){
const float2 mean = means[i];
int distance_to_mean = distance(point, mean);
if(closest_cluster == -1 || distance_to_mean < current_distance){
current_distance = distance_to_mean;
closest_cluster = i;
}
}
// write new cluster
clusters[gid] = closest_cluster;
}
__kernel void update_means(__global const float2 *points,
const uint n_points,
__global float2 *means,
__global const int *clusters)
{
const uint k = get_global_id(0);
float2 sum = { 0, 0 };
float count = 0;
for(uint i = 0; i < n_points; i++){
if(clusters[i] == k){
sum += points[i];
count += 1;
}
}
means[k] = sum / count;
}
);
// build the k-means program
compute::program k_means_program =
compute::program::build_with_source(k_means_source, context);
// setup the k-means kernels
compute::kernel assign_clusters_kernel(k_means_program, "assign_clusters");
assign_clusters_kernel.set_arg(0, points);
assign_clusters_kernel.set_arg(1, means);
assign_clusters_kernel.set_arg(2, int_(k));
assign_clusters_kernel.set_arg(3, clusters);
compute::kernel update_means_kernel(k_means_program, "update_means");
update_means_kernel.set_arg(0, points);
update_means_kernel.set_arg(1, int_(n_points));
update_means_kernel.set_arg(2, means);
update_means_kernel.set_arg(3, clusters);
// run the k-means algorithm
for(int iteration = 0; iteration < 25; iteration++){
queue.enqueue_1d_range_kernel(assign_clusters_kernel, 0, n_points, 0);
queue.enqueue_1d_range_kernel(update_means_kernel, 0, k, 0);
}
// create output image
compute::image2d image(
context, width, height, compute::image_format(CL_RGBA, CL_UNSIGNED_INT8)
);
// program with two kernels, one to fill the image with white, and then
// one the draw to points calculated in coordinates on the image
const char draw_walk_source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void draw_points(__global const float2 *points,
__global const int *clusters,
__write_only image2d_t image)
{
const uint i = get_global_id(0);
const float2 coord = points[i];
// map cluster number to color
uint4 color = { 0, 0, 0, 0 };
switch(clusters[i]){
case 0:
color = (uint4)(255, 0, 0, 255);
break;
case 1:
color = (uint4)(0, 255, 0, 255);
break;
case 2:
color = (uint4)(0, 0, 255, 255);
break;
case 3:
color = (uint4)(255, 255, 0, 255);
break;
case 4:
color = (uint4)(255, 0, 255, 255);
break;
case 5:
color = (uint4)(0, 255, 255, 255);
break;
}
// draw a 3x3 pixel point
for(int x = -1; x <= 1; x++){
for(int y = -1; y <= 1; y++){
if(coord.x + x > 0 && coord.x + x < get_image_width(image) &&
coord.y + y > 0 && coord.y + y < get_image_height(image)){
write_imageui(image, (int2)(coord.x, coord.y) + (int2)(x, y), color);
}
}
}
}
__kernel void fill_gray(__write_only image2d_t image)
{
const int2 coord = { get_global_id(0), get_global_id(1) };
if(coord.x < get_image_width(image) && coord.y < get_image_height(image)){
uint4 gray = { 15, 15, 15, 15 };
write_imageui(image, coord, gray);
}
}
);
// build the program
compute::program draw_program =
compute::program::build_with_source(draw_walk_source, context);
// fill image with dark gray
compute::kernel fill_kernel(draw_program, "fill_gray");
fill_kernel.set_arg(0, image);
queue.enqueue_nd_range_kernel(
fill_kernel, dim(0, 0), dim(width, height), dim(1, 1)
);
// draw points colored according to cluster
compute::kernel draw_kernel(draw_program, "draw_points");
draw_kernel.set_arg(0, points);
draw_kernel.set_arg(1, clusters);
draw_kernel.set_arg(2, image);
queue.enqueue_1d_range_kernel(draw_kernel, 0, n_points, 0);
// show image
compute::opencv_imshow("k-means", image, queue);
// wait and return
cv::waitKey(0);
return 0;
}
|