1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// Copyright Oliver Kowalke 2014.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstdlib>
#include <iostream>
#include <stdexcept>
#include <string>
#include <boost/chrono.hpp>
#include <boost/coroutine2/all.hpp>
#include <boost/cstdint.hpp>
#include <boost/program_options.hpp>
#include "../bind_processor.hpp"
#include "../clock.hpp"
#include "../cycle.hpp"
boost::uint64_t jobs = 1000;
struct X
{
std::string str;
X( std::string const& str_) :
str( str_)
{}
};
const X x("abc");
void fn_void( boost::coroutines2::coroutine< void >::push_type & c)
{ while ( true) c(); }
void fn_int( boost::coroutines2::coroutine< int >::push_type & c)
{ while ( true) c( 7); }
void fn_x( boost::coroutines2::coroutine< X >::push_type & c)
{
while ( true) c( x);
}
duration_type measure_time_void( duration_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< void >::pull_type c( stack_alloc, fn_void);
time_point_type start( clock_type::now() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
duration_type total = clock_type::now() - start;
total -= overhead_clock(); // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
duration_type measure_time_int( duration_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< int >::pull_type c( stack_alloc, fn_int);
time_point_type start( clock_type::now() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
duration_type total = clock_type::now() - start;
total -= overhead_clock(); // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
duration_type measure_time_x( duration_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< X >::pull_type c( stack_alloc, fn_x);
time_point_type start( clock_type::now() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
duration_type total = clock_type::now() - start;
total -= overhead_clock(); // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
# ifdef BOOST_CONTEXT_CYCLE
cycle_type measure_cycles_void( cycle_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< void >::pull_type c( stack_alloc, fn_void);
cycle_type start( cycles() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
cycle_type total = cycles() - start;
total -= overhead; // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
cycle_type measure_cycles_int( cycle_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< int >::pull_type c( stack_alloc, fn_int);
cycle_type start( cycles() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
cycle_type total = cycles() - start;
total -= overhead; // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
cycle_type measure_cycles_x( cycle_type overhead)
{
boost::coroutines2::segmented_stack stack_alloc;
boost::coroutines2::coroutine< X >::pull_type c( stack_alloc, fn_x);
cycle_type start( cycles() );
for ( std::size_t i = 0; i < jobs; ++i) {
c();
}
cycle_type total = cycles() - start;
total -= overhead; // overhead of measurement
total /= jobs; // loops
total /= 2; // 2x jump_fcontext
return total;
}
# endif
int main( int argc, char * argv[])
{
try
{
bool bind = false;
boost::program_options::options_description desc("allowed options");
desc.add_options()
("help", "help message")
("bind,b", boost::program_options::value< bool >( & bind), "bind thread to CPU")
("jobs,j", boost::program_options::value< boost::uint64_t >( & jobs), "jobs to run");
boost::program_options::variables_map vm;
boost::program_options::store(
boost::program_options::parse_command_line(
argc,
argv,
desc),
vm);
boost::program_options::notify( vm);
if ( vm.count("help") ) {
std::cout << desc << std::endl;
return EXIT_SUCCESS;
}
if ( bind) bind_to_processor( 0);
duration_type overhead_c = overhead_clock();
std::cout << "overhead " << overhead_c.count() << " nano seconds" << std::endl;
boost::uint64_t res = measure_time_void( overhead_c).count();
std::cout << "void: average of " << res << " nano seconds" << std::endl;
res = measure_time_int( overhead_c).count();
std::cout << "int: average of " << res << " nano seconds" << std::endl;
res = measure_time_x( overhead_c).count();
std::cout << "X: average of " << res << " nano seconds" << std::endl;
#ifdef BOOST_CONTEXT_CYCLE
cycle_type overhead_y = overhead_cycle();
std::cout << "overhead " << overhead_y << " cpu cycles" << std::endl;
res = measure_cycles_void( overhead_y);
std::cout << "void: average of " << res << " cpu cycles" << std::endl;
res = measure_cycles_int( overhead_y);
std::cout << "int: average of " << res << " cpu cycles" << std::endl;
res = measure_cycles_x( overhead_y);
std::cout << "X: average of " << res << " cpu cycles" << std::endl;
#endif
return EXIT_SUCCESS;
}
catch ( std::exception const& e)
{ std::cerr << "exception: " << e.what() << std::endl; }
catch (...)
{ std::cerr << "unhandled exception" << std::endl; }
return EXIT_FAILURE;
}
|